• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
JI Jiayun,XIAO Xiao,YANG Pinlu,et al. Application of GA-BP Neural Network in Accurately Characterizing the Diffusion Range of Groundwater Pollutants in the Site[J]. Rock and Mineral Analysis,2025,44(4):1−14. DOI: 10.15898/j.ykcs.202409280204
Citation: JI Jiayun,XIAO Xiao,YANG Pinlu,et al. Application of GA-BP Neural Network in Accurately Characterizing the Diffusion Range of Groundwater Pollutants in the Site[J]. Rock and Mineral Analysis,2025,44(4):1−14. DOI: 10.15898/j.ykcs.202409280204

Application of GA-BP Neural Network in Accurately Characterizing the Diffusion Range of Groundwater Pollutants in the Site

More Information
  • Received Date: September 27, 2024
  • Revised Date: January 02, 2025
  • Accepted Date: January 09, 2025
  • Available Online: February 21, 2025
  • HIGHLIGHTS
    (1) The distribution of groundwater Mn2+ concentration in the study area does not conform to the law of Mn2+ production and migration, and needs to be corrected.
    (2) The GA-BP neural network was used to predict the concentration of Mn2+ in the area with less distribution of sampling points and correct the distribution of Mn2+.
    (3) It is verified that the corrected Mn2+ concentration distribution conforms to the site Mn2+ production mechanism and groundwater dynamics conditions.

    This study addresses the issue of unevenly distributed sampling points, which leads to inaccurate characterization of pollutant diffusion ranges. Using ArcGIS spatial interpolation, the distribution of Mn2+ ions in a chemical park was analyzed, revealing discrepancies due to uneven sampling. To overcome this, two neural network models—GA-BP and standard BP—were applied to predict Mn2+ concentrations at unsampled locations. The GA-BP neural network, optimized with a Genetic Algorithm, showed the best performance, filling gaps in data and allowing for a more accurate concentration distribution map. This revised map was used to delineate the Mn2+ diffusion range, which was further validated with the known production and migration mechanisms of Mn2+. The results demonstrate that the GA-BP model significantly improves the accuracy of pollutant diffusion mapping and offers a more reliable method for environmental pollution assessment, especially in areas with limited sampling data.

  • [1]
    Gao Y, Qian H, Ren W, et al. Hydrogeochemical Characterization and Quality Assessment of Ground-water Based on Integrated-Weight Water Quality Index in a Concentrated Urban Area[J]. Journal of Cleaner Production, 2020, 260: 121006. doi: 10.1016/j.jclepro.2020.121006
    [2]
    张保会, 王林芳, 郭宏, 等. 我国污染场地修复决策系统研究进展[J]. 环境与可持续发展, 2021, 46(2): 138−143. doi: 10.19758/j.cnki.issn1673-288x.202102138

    Zhang B H, Wang L F, Guo H, et al. Research Progress of Decision-Making System for Remediation of Contaminated Sites in China[J]. Environment and Sustainable Development, 2021, 46(2): 138−143. doi: 10.19758/j.cnki.issn1673-288x.202102138
    [3]
    陈卫平, 谢天, 李笑诺, 等. 欧美发达国家场地土壤污染防治技术体系概述[J]. 土壤学报, 2018, 55(3): 527−542. doi: 10.11766/trxb201712130487

    Chen W P, Xie T, Li X N, et al. Generalization of Technical Systems for Soil Pollution Prevention and Control in Developed Countries[J]. Acta Pedologica Sinica, 2018, 55(3): 527−542. doi: 10.11766/trxb201712130487
    [4]
    陈吉吉, 陶蕾, 刘保献, 等. 北京市平原区地下水铁锰分布特征及成因分析[J]. 水文地质工程地质, 2024, 51(6): 198−207. doi: 10.16030/j.cnki.issn.1000-3665.202311051

    Chen J J, Tao L, Liu B X, et al. Distribution Characteristics and Genesis Analysis of Groundwater Iron and Manganese in Beijing Plain Area[J]. Hydrogeological Engineering Geology, 2024, 51(6): 198−207. doi: 10.16030/j.cnki.issn.1000-3665.202311051
    [5]
    Jiang W J, Sheng Y Z, Wang G C, et al. Cl, Br, B, Li, and Noble Gases Isotopes to Study the Origin and Evolution of Deep Groundwater in Sedimentary Basins, a Review[J]. Environmental Chemistry Letters, 2022, 20: 1497−1528. doi: 10.1007/s10311-021-01371-z
    [6]
    於方, 赵丹, 王膑, 等. 《生态环境损害鉴定评估技术指南土壤与地下水》解读[J]. 环境保护, 2019, 47(5): 19−23. doi: 10.14026/j.cnki.0253-9705.2019.05.004

    Yu F, Zhao D, Wang B, et al. Interpretation of Technical Guidelines for Identification and Assessment of Eco-Environmental Damage to Soil and Groundwater[J]. Environmental Protection, 2019, 47(5): 19−23. doi: 10.14026/j.cnki.0253-9705.2019.05.004
    [7]
    刘宏伟. 中宁石空工业园区地下水锰污染评价及其水环境影响预测研究[D]. 西安: 长安大学, 2013.

    Liu H W. Evaluation of Groundwater Manganese Pollution and Prediction of Water Environment Impact in Zhongning Shikong Industrial Park [D]. Xi’an: Chang’an University, 2013.
    [8]
    Jiang W J, Meng L S, Liu F T, et al. Distribution, Source Investigation, and Risk Assessment of Topsoil Heavy Metals in Areas with Intensive Anthropogenic Activities Using the Positive Matrix Factorization (PMF) Model Coupled with Self-Organizing Map (SOM)[J]. Environmental Geochemistry and Health, 2023, 45: 6353−6370. doi: 10.1007/s10653-023-01587-8
    [9]
    李元杰, 王森杰, 张敏, 等. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学, 2018, 38(3): 1185−1193. doi: 10.19674/j.cnki.issn1000-6923.2018.0141

    Li Y J, Wang S J, Zhang M, et al. Research Progress of Monitored Natural Attenuation Remediation Technology for Soil and Groundwater Pollution[J]. China Environmental Science, 2018, 38(3): 1185−1193. doi: 10.19674/j.cnki.issn1000-6923.2018.0141
    [10]
    王兴, 刘莹, 王春晖, 等. 海洋盐度分布的插值方法应用与对比研究[J]. 海洋通报, 2016, 35(3): 324−330. doi: 10.11840/j.issn.1001-6392.2016.03.011

    Wang X, Liu Y, Wang C H, et al. Application and Comparative Study of Interpolation Methods for Ocean Salinity Distribution[J]. Ocean Bulletin, 2016, 35(3): 324−330. doi: 10.11840/j.issn.1001-6392.2016.03.011
    [11]
    Mohammed A, Paraskevas T, Gaetano P, et al. Application of Multiple Spatial Interpolation Approaches to Annual Rainfall Data in the Wadi Cheliff Basin (North Algeria)[J]. Ain Shams Engineering Journal, 2024, 15(3): 10257.
    [12]
    段宁, 杨思言, 魏婉婷. 基于BP神经网络的铅酸蓄电池厂地下水重金属浓度预测[J]. 环境科学与技术, 2016, 39(1): 194−198.

    Duan N, Yang S Y, Wei W T. Prediction of Heavy Metal Concentrations of the Groundwater from a Lead-Acid Battery Factory Based on BP Neural Network[J]. Environmental Science & Technology, 2016, 39(1): 194−198.
    [13]
    刘伟韬, 李蓓蓓, 杜衍辉, 等. 基于改进的SSA-BP神经网络的矿井突水水源识别模型研究[J]. 工矿自动化, 2024, 50(2): 98−105,115. doi: 10.13272/j.issn.1671-251x.2023070101

    Liu W, Li B, Du Y, et al. Research on the Recognition Model of Mine Water Inrush Source Based on Improved SSA-BP Neural Network[J]. Industry and Mine Automation, 2024, 50(2): 98−105,115. doi: 10.13272/j.issn.1671-251x.2023070101
    [14]
    Robertson B, Dam-Bates V P, Gansell O. Halton Iterative Partitioning Master Frames[J]. Environmental and Ecological Statistics, 2021, 29(1): 1−22. doi: 10.1007/s10651-020-00481-1
    [15]
    李海斌. 基于遗传算法的BP神经网络在柴油机故障诊断中的应用[J]. 科技视界, 2014, (13): 206, 211. doi: 10.19694/j.cnki.issn2095-2457.2014.13.148

    Li H B. Application of BP Neural Network Based on Genetic Algorithm in Diesel Engine Fault Diagnosis[J]. Science & Technology Vision, 2014, (13): 206, 211. doi: 10.19694/j.cnki.issn2095-2457.2014.13.148
    [16]
    王玉雯, 陈颖辉, 师庭飞. 改进的BP网络在深基坑变形预报中的应用[J]. 科学技术与工程, 2010, 10(15): 3791−3794. doi: 10.3969/j.issn.1671-1815.2010.15.057

    Wang Y W, Chen Y H, Shi T F. Application of Improved BP Network in Deformation Prediction of Deep Foundation Pit[J]. Science, Technology and Engineering, 2010, 10(15): 3791−3794. doi: 10.3969/j.issn.1671-1815.2010.15.057
    [17]
    徐杰, 但斌斌, 容芷君, 等. BP神经网络在铁液预处理脱硫率预测中的应用[J]. 铸造技术, 2017, 38(9): 2183−2187,2192. doi: 10.16410/j.issn1000-8365.2017.09.033

    Xu J, Dan B B, Rong Z J, et al. Application of BP Neural Network in Prediction of Desulfurization Rate of Molten Iron Pretreatment[J]. Casting Technology, 2017, 38(9): 2183−2187,2192. doi: 10.16410/j.issn1000-8365.2017.09.033
    [18]
    杨帆. 基于BP神经网络的CO2通量预测模型研究[D]. 哈尔滨: 东北林业大学, 2017.

    Yang F. Research on CO2 Flux Prediction Model Based on BP Neural Network [D]. Harbin: Northeast Forestry University, 2017.
    [19]
    孙卫鹏, 徐合力, 高岚. 基于GA-BP的船舶同步发电机定转子绕组匝间短路故障诊断研究[J]. 中国修船, 2020, 33(4): 48−54. doi: 10.13352/j.issn.1001-8328.2020.04.013

    Sun W P, Xu H L, Gao L. Research on Fault Diagnosis of Inter-Turn Short Circuit of Stator and Rotor Windings of Ship Synchronous Generator Based on GA-BP[J]. China Ship Repair, 2020, 33(4): 48−54. doi: 10.13352/j.issn.1001-8328.2020.04.013
    [20]
    王嵘冰, 徐红艳, 李波, 等. BP神经网络隐含层节点数确定方法研究[J]. 计算机技术与发展, 2018, 28(4): 31−35. doi: 10.3969/j.issn.1673-629X.2018.04.007

    Wang, Xu, Li et al. Research on the Determination Method of Hidden Layer Nodes in BP Neural Network[J]. Computer Technology and Development, 2018, 28(4): 31−35. doi: 10.3969/j.issn.1673-629X.2018.04.007
    [21]
    陈克根. 统计机器学习中的过拟合问题[J]. 文渊(中学版), 2019(11): 755. doi: 10.12252/j.issn.2096-627X.2019.11.1103

    Chen Kegen. Overfitting Problem in Statistical Machine Learning[J]. Wen Yuan (Middle School Edition), 2019(11): 755. doi: 10.12252/j.issn.2096-627X.2019.11.1103
    [22]
    王蒙. 机器学习中样本筛选方法的研究与应用[D]. 成都: 电子科技大学, 2017.

    Wang Meng. Research and Application of Sample Screening Methods in Machine Learning [D]. Chengdu: University of Electronic Science and Technology of China, 2017.
    [23]
    Zheng Z, Zhang Y, Su X, et al. Responses of Hydrochemical Parameters, Community Structures, and Microbial Activities to the Natural Biodegradation of Petroleum Hydrocarbons in a Groundwater-Soil Environment[J]. Environmental Earth Sciences, 2016, 75(21). doi: 10.1007/s12665-016-6193-1
    [24]
    Klinchuch L, Delfino T. Reductive Dissolution and Preci-pitation of Manganese Due to Biodegradation of Petroleum Hydrocarbons[J]. Environmental Geosciences, 2000, 7(4): 211−212. doi: 10.1046/j.1526-0984.2000.74002-12.x
    [25]
    Ning Z, Zhang M, He Z, et al. Spatial Pattern of Bacterial Community Diversity Formed in Different Groundwater Field Corresponding to Electron Donors and Acceptors Distributions at a Petroleum-ContaminatedSite[J]. Water, 2018, 10(7): 842. doi: 10.3390/w10070842
    [26]
    温晶. 石油污染含水层石油相和水相有机质组分研究[D]. 北京: 中国石油大学(北京), 2023.

    Wen J. Study on Organic Matter Composition of Petroleum Phase and Aqueous Phase in Petroleum Contaminated Aquifer[D]. Beijing: China University of Petroleum (Beijing), 2023.
    [27]
    丁智晖, 董子萱, 于水利. 难降解有机物质的生物降解技术分析[J]. 当代化工研究, 2018(1): 49−51. doi: 10.3969/j.issn.1672-8114.2018.01.031

    Ding Z H, Dong Z X, Yu S L. The Analysis of Biodegradation Technology in the Field of Refractory Organic Matters[J]. Modern Chemical Research, 2018(1): 49−51. doi: 10.3969/j.issn.1672-8114.2018.01.031
    [28]
    盛连喜, 李明堂, 徐镜波. 硝基苯类化合物微生物降解研究进展[J]. 应用生态学报, 2007, 18(7): 1654−1660. doi: 10.3321/j.issn:1001-9332.2007.07.039

    Sheng L X, Li M T, Xu J B. Research Advances in Microbial Degradation of Nitrobenzene and Its Substituted Compounds[J]. Chinese Journal of Applied Ecology, 2007, 18(7): 1654−1660. doi: 10.3321/j.issn:1001-9332.2007.07.039
    [29]
    豆俊峰, 刘翔. 苯系化合物在硝酸盐还原条件下的生物降解性能[J]. 环境科学, 2006, 27(9): 1846−1852. doi: 10.13227/j.hjkx.2006.09.027

    Dou J F, Liu X. Biodegradability of Benzene Series Compounds Under Nitrate Reduction Conditions[J]. Environmental Sciences, 2006, 27(9): 1846−1852. doi: 10.13227/j.hjkx.2006.09.027
    [30]
    林广宇. 地下水位变动带石油烃污染物的迁移转化规律研究[D]. 长春: 吉林大学, 2014.

    Lin G Y. Study on the Migration and Transformation of Petroleum Hydrocarbon Pollutants in Groundwater Level Fluctuation Zone [D]. Changchun: Jilin University, 2014.
    [31]
    路莹. 浅层地下水系统石油类污染物的生物降解机制研究[D]. 长春: 吉林大学, 2013.

    Lu Y. Study on Biodegradation Mechanism of Petroleum Pollutants in Shallow Groundwater System [D]. Changchun: Jilin University, 2013.
    [32]
    李烨, 潘涛, 刘菲, 李森, 郭淼. 四氯乙烯在不同地下水环境的生物共代谢降解[J]. 岩矿测试, 2012, 31(4): 682−688. doi: 10.15898/j.cnki.11-2131/td.2012.04.033

    Li Y, Pan T, Liu F, et al. Biological Co-Metabolic Degradation of Tetrachloroethylene in Different Groundwater Environments[J]. Rock and Mineral Analysis, 2012, 31(4): 682−688. doi: 10.15898/j.cnki.11-2131/td.2012.04.033
    [33]
    宁卓, 郭彩娟, 蔡萍萍, 等. 某石油污染含水层降解能力地球化学评估[J]. 中国环境科学, 2018, 38(11): 4068−4074. doi: 10.19674/j.cnki.issn1000-6923.2018.0450

    Ning Z, Guo C J, Cai P P, et al. Geochemical Assess-ment of the Degradation Capacity of an Oil-Contaminated Aquifer[J]. Environmental Sciences of China, 2018, 38(11): 4068−4074. doi: 10.19674/j.cnki.issn1000-6923.2018.0450
    [34]
    林广宇. 地下水位变动带石油烃污染物的迁移转化规律研究[D]. 长春: 吉林大学, 2014.

    Lin G Y. Study on the Migration and Transformation of Petroleum Hydrocarbon Pollutants in Groundwater Level Fluctuation Zone [D]. Changchun: Jilin University, 2014.

Catalog

    Article views (7) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return