• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHANG Yijun,ZHANG Yuhang,CHEN Yan,et al. Determination of Zirconium and Titanium in Marine Placer Deposits by ICP-OES with Alkali Fusion of Lithium Metaborate-Lithium Tetraborate Composite Flux[J]. Rock and Mineral Analysis,2024,43(6):858−865. DOI: 10.15898/j.ykcs.202409110188
Citation: ZHANG Yijun,ZHANG Yuhang,CHEN Yan,et al. Determination of Zirconium and Titanium in Marine Placer Deposits by ICP-OES with Alkali Fusion of Lithium Metaborate-Lithium Tetraborate Composite Flux[J]. Rock and Mineral Analysis,2024,43(6):858−865. DOI: 10.15898/j.ykcs.202409110188

Determination of Zirconium and Titanium in Marine Placer Deposits by ICP-OES with Alkali Fusion of Lithium Metaborate-Lithium Tetraborate Composite Flux

More Information
  • Received Date: September 10, 2024
  • Revised Date: October 25, 2024
  • Accepted Date: October 31, 2024
  • Available Online: November 29, 2024
  • Published Date: November 29, 2024
  • HIGHLIGHTS
    (1) Compared with other single flux, the melting effect of lithium metaborate - lithium tetraborate composite flux is better, and more widely used.
    (2) The operation process of the alkali fusion method is simplified, and the technology for dissolving molten substances is improved.
    (3) The alkali fusion method is in accordance with the results obtained by the closed acid dissolution method, and the process is more convenient.

    The marine placer deposits of Hainan Island contain abundant zirconium (Zr) and titanium (Ti) resources, which hold significant development potential. An alkali fusion-inductively coupled plasma-optical emission spectrometry method based on a composite flux of lithium metaborate and lithium tetraborate (mm=33∶67) was developed for determining Zr and Ti in marine placers. In this method, the sample was fused with 0.8g flux at 1000℃ for 15min. After cooling, the molten substance was poured into a dilute acid and dissolved by oscillation in a constant temperature oscillator. This approach simplifies the operation process by avoiding the complexity associated with high-temperature procedures while enhancing melt dissolution techniques. The detection limit for Zr in this method is 0.40μg/g while that for TiO2 is 0.0025%. Based on standard materials, the relative standard deviation (RSD) of Zr ranges between 1.0%−3.5%; RSD of TiO2 ranges between 0.7%−3.3%. These precision values align with quality management standards set forth by geological and mineral laboratory testing. The method is suitable for rapid continuous analysis of Zr and Ti in marine placer deposits.

  • [1]
    于洋, 吴磊, 王娜, 等. 电感耦合等离子体质谱法测定岩石样品中15种稀土元素含量不确定度的评估[J]. 华北地质, 2024, 47(2): 105−110. doi: 10.19948/j.12-1471/P.2024.02.12

    Yu Y, Wu L, Wang N, et al. Uncertainty evaluation of 15 rare earth elements in rock by ICP-MS[J]. North China Geology, 2024, 47(2): 105−110. doi: 10.19948/j.12-1471/P.2024.02.12
    [2]
    贾雷, 李俊东, 黄青春, 等. 电感耦合等离子体质谱法测定大批量钼多金属矿中钼及4种主要伴生元素的含量[J]. 理化检验(化学分册), 2024, 60(3): 260−265. doi: 10.11973/lhjy-hx202403003

    Jia L, Li J D, Huang Q C, et al. Determination of molybdenum and 4 major associated elements in large-scale molybdenum polymetallic ores by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2024, 60(3): 260−265. doi: 10.11973/lhjy-hx202403003
    [3]
    陆海川, 袁新, 夏祥, 等. 微敞开体系消解-电感耦合等离子体质谱法测定地球化学样品中稀土元素[J]. 冶金分析, 2024, 44(2): 30−39. doi: 10.13228/j.boyuan.issn1000-7571.012316

    Lu H C, Yuan X, Xia X, et al. Determination of rare earth elements in geochemical samples by inductively coupled plasma mass spectrometry after digestion in micro-open system[J]. Metallurgical Analysis., 2024, 44(2): 30−39. doi: 10.13228/j.boyuan.issn1000-7571.012316
    [4]
    辜洋建, 陈璐, 王玉环, 等. 高压密闭消解-电感耦合等离子体质谱法测定地球化学样品中6种元素的含量[J]. 理化检验(化学分册), 2024, 60(7): 731−736. doi: 10.11973/lhjy-hx230174

    Gu Y J, Chen L, Wang Y H, et al. Determination of 6 elements in geochemical sample by inductively coupled plasma mass spectrometry with high pressure sealed digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2024, 60(7): 731−736. doi: 10.11973/lhjy-hx230174
    [5]
    常青. 密闭消解-电感耦合等离子体发射光谱法检测钨钼矿中伴生元素的研究[J]. 化学工程与装备, 2024(6): 128−130. doi: 10.19566/j.cnki.cn35-1285/tq.2024.06.037

    Chang Q. Research on the detection of trace elements in tungsten-molybdenum ores by closed vessel digestion-inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Chemical Engineering and Equipment, 2024(6): 128−130. doi: 10.19566/j.cnki.cn35-1285/tq.2024.06.037
    [6]
    王蕾, 于汀汀, 孙红宾, 等. 高压密闭酸溶-电感耦合等离子体发射光谱法测定硼矿石中的硼[J]. 岩矿测试, 2024, 43(3): 468−475. doi: 10.15898/j.ykcs.202308070131

    Wang L, Yu T T, Sun H B, et al. Boron analysis in boron ores by inductively coupled plasma-optical emission spectrometry with sealed acid digestion at high pressure[J]. Rock and Mineral Analysis, 2024, 43(3): 468−475. doi: 10.15898/j.ykcs.202308070131
    [7]
    李佳, 胡忠贵, 江梦宇, 等. 微波消解-电感耦合等离子发射光谱法同时测定碳酸盐岩中Ca、Mg、Sr、Ba等多元素[J]. 中国无机分析化学, 2023, 13(1): 94−99. doi: 10.3969/j.issn.2095-1035.2023.01.013

    Li J, Hu Z G, Jiang M Y, et al. Simultaneous determination of 13 elements such as Ca, Mg, Sr, Ba in carbonate rocks by inductively coupled plasma atomic emission spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(1): 94−99. doi: 10.3969/j.issn.2095-1035.2023.01.013
    [8]
    李旭霞. 电感耦合等离子体发射光谱法测定土壤中7种金属元素[J]. 化学工程师, 2024, 38(6): 32−34, 63. doi: 10.16247/j.cnki.23-1171/tq.20240632

    Li X X. Determination of 7 metal elements in soil by ICP-AES[J]. Chemical Engineer, 2024, 38(6): 32−34, 63. doi: 10.16247/j.cnki.23-1171/tq.20240632
    [9]
    余蕾, 刘军, 张小毅, 等. 微波消解-电感耦合等离子体原子发射光谱法测定菱镁矿中10种主量元素[J]. 冶金分析, 2023, 43(1): 74−81. doi: 10.13228/j.boyuan.issn1000-7571.011840

    Yu L, Liu J, Zhang X Y, et al. Determination of 10 major elements in magnesite by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2023, 43(1): 74−81. doi: 10.13228/j.boyuan.issn1000-7571.011840
    [10]
    滕广清, 王彬果. 碱熔-电感耦合等离子体原子发射光谱法测定石灰石中8种组分[J]. 冶金分析, 2024, 44(7): 88−94. doi: 10.13228/j.boyuan.issn1000-7571.012409

    Teng G Q, Wang B G. Determination of 8 components in limestone by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2024, 44(7): 88−94. doi: 10.13228/j.boyuan.issn1000-7571.012409
    [11]
    席秀丽, 安婷婷. 电感耦合等离子体发射光谱法测定高岭土中8项组分含量[J]. 分析仪器, 2024(3): 25−30. doi: 10.3969/j.issn.1001‐232x.2024.03.005

    Xi X L, An T T. Determination of 8 components in kaolin by inductively coupled plasma emission spectrometry[J]. Analytical Instrumentation, 2024(3): 25−30. doi: 10.3969/j.issn.1001‐232x.2024.03.005
    [12]
    鲁雪飞. 电感耦合等离子体发射光谱法测定钼铬合金中9种元素[J]. 铁合金, 2024, 55(3): 51−54. doi: 10.16122/j.cnki.issn1001-1943.2024.03.013

    Lu X F. Determination of 9 elements in molybdenum-chromium alloy by inductively coupled plasma emission spectroscopy[J]. Ferro-Alloys, 2024, 55(3): 51−54. doi: 10.16122/j.cnki.issn1001-1943.2024.03.013
    [13]
    邢夏, 徐进力, 刘彬, 等. 电感耦合等离子体发射光谱法在地质样品分析中的应用进展[J]. 物探与化探, 2016, 40(5): 998−1006. doi: 10.11720/wtyht.2016.5.25

    Xing X, Xu J L, Liu B, et al. Advances in the application of inductively coupled plasma optical emission spectrometry in geological sample analysis[J]. Geophysical & Geochemical Exploration, 2016, 40(5): 998−1006. doi: 10.11720/wtyht.2016.5.25
    [14]
    何红蓼, 李冰, 韩丽荣, 等. 封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J]. 分析试验室, 2002, 21(5): 8−12. doi: 10.13595/j.cnki.issn1000-0720.2002.0132

    He H L, Li B, Han L R, et al. Evaluation of the closed-vessel pressure acid dissolution-ICP-MS method for the determination of 47 elements in geological samples[J]. Chinese Journal of Analysis Laboratory, 2002, 21(5): 8−12. doi: 10.13595/j.cnki.issn1000-0720.2002.0132
    [15]
    冯俊, 王银剑, 段文, 等. 电感耦合等离子体质谱(ICP-MS)法测定地质样品中镉、铬、钨、钽和铌[J]. 中国无机分析化学, 2024, 14(5): 586−592. doi: 10.3969/j.issn.2095-1035.2024.05.010

    Feng J, Wang Y J, Duan W, et al. Determination of cadmium, chromium, tungsten, tantalum and niobium in geological samples by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(5): 586−592. doi: 10.3969/j.issn.2095-1035.2024.05.010
    [16]
    王佳翰, 李正鹤, 杨峰, 等. 碱熔-电感耦合等离子体原子发射光谱法测定海洋沉积物中铝铁锰钛[J]. 冶金分析, 2021, 41(3): 68−74. doi: 10.13228/j.boyuan.issn1000-7571.011185

    Wang J H, Li Z H, Yang F, et al. Determination of aluminum, iron, manganese, and titanium in marine sediment by alkali fusion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2021, 41(3): 68−74. doi: 10.13228/j.boyuan.issn1000-7571.011185
    [17]
    曹宁宁, 张兆鑫, 李佳昊, 等. 碱熔-电感耦合等离子体发射光谱(ICP-OES)法同时测定土壤中4种金属元素[J]. 中国无机分析化学, 2024, 14(5): 593−599. doi: 10.3969/j.issn.2095-1035.2024.05.011

    Cao N N, Zhang Z X, Li J H, et al. Simultaneous determination of four metal elements in soil by inductively coupled plasma emission spectrometry (ICP-OES) with alkali melting[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(5): 593−599. doi: 10.3969/j.issn.2095-1035.2024.05.011
    [18]
    席秀丽, 王生进, 高艳敏, 等. 偏硼酸锂-四硼酸锂熔融-电感耦合等离子体原子发射光谱法测定土壤中14种成分[J]. 冶金分析, 2024, 44(4): 65−72. doi: 10.13228/j.boyuan.issn1000-7571.012320

    Xi X L, Wang S J, Gao Y M, et al. Determination of 14 components in soil by lithium metaborate-tetraborate fusion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2024, 44(4): 65−72. doi: 10.13228/j.boyuan.issn1000-7571.012320
    [19]
    滕广清, 张改梅, 鲍希波. 四硼酸锂-偏硼酸锂熔融-重铬酸钾滴定法测定铁矿石中全铁[J]. 冶金分析, 2023(9): 76−80. doi: 10.13228/j.boyuan.issn1000-7571.012074

    Teng G Q, Zhang G M, Bao X B. Determination of total iron in iron ore by lithium tetraborate-lithium metaborate fusion and potassium dichromate titration method[J]. Metallurgical Analysis, 2023(9): 76−80. doi: 10.13228/j.boyuan.issn1000-7571.012074
    [20]
    Chojnacka K, Samoraj M, Tuhy Ł, et al. Using XRF and ICP-OES in biosorption studies[J]. Molecules, 2018, 23(8): 2076. doi: 10.3390/molecules23082076
    [21]
    Khan S R, Sharma B, Chawla P A, et al. Inductively coupled plasma optical emission spectrometry (ICP-OES): A powerful analytical technique for elemental analysis[J]. Food Analytical Methods, 2022: 1−23.
    [22]
    Morrison C, Sun H, Yao Y, et al. Methods for the ICP-OES analysis of semiconductor materials[J]. Chemistry of Materials, 2020, 32(5): 1760−1768. doi: 10.1021/acs.chemmater.0c00255
    [23]
    Shishov A, Savinov S, Volodina N, et al. Deep eutectic solvent-based extraction of metals from oil samples for elemental analysis by ICP-OES[J]. Microchemical Journal, 2022, 179: 107456. doi: 10.1016/j.microc.2022.107456
    [24]
    Al-Juhaimi F, Kulluk D A, Mohamed Ahmed I A, et al. Quantitative determination of macro and micro elements and heavy metals accumulated in wild fruits analyzed by ICP-OES method[J]. Environmental Monitoring and Assessment, 2023, 195(11): 1370. doi: 10.1007/s10661-023-12025-8
    [25]
    李亚楠. 应用ICP-OES法测定矿区土壤中有价稀土元素含量[J]. 矿产勘查, 2024, 15(7): 1245−1253. doi: 10.20008/j.kckc.202407012

    Li Y N. Application of ICP-OES method to determine the content of valuable rare earth elements in soil of mining areas[J]. Mineral Exploration, 2024, 15(7): 1245−1253. doi: 10.20008/j.kckc.202407012
    [26]
    黄超冠, 蒙义舒, 郭焕花, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J]. 岩矿测试, 2018, 37(1): 30−35. doi: 10.15898/j.cnki.11-2131/td.201704240065

    Huang C G, Meng Y S, Guo H H, et al. Determination of chromium, iron, molybdenum, and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2018, 37(1): 30−35. doi: 10.15898/j.cnki.11-2131/td.201704240065
    [27]
    李正鹤, 黄金松, 王佳翰. 工作碱熔-电感耦合等离子体质谱法测定海洋沉积物中的稀土元素[J]. 化学世界, 2021, 62(11): 660−666. doi: 10.19500/j.cnki.0367-6358.20200701

    Li Z H, Huang J S, Wang J H. Determination of rare earth elements in marine sediments by alkaline fusion inductively coupled plasma mass spectrometry[J]. Chemical World, 2021, 62(11): 660−666. doi: 10.19500/j.cnki.0367-6358.20200701
    [28]
    王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306−315. doi: 10.15898/j.cnki.11-2131/td.202006050085

    Wang J H, Li Z H, Yang F, et al. Simultaneous determination of 48 elements in marine sediments by ICP-MS with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306−315. doi: 10.15898/j.cnki.11-2131/td.202006050085
    [29]
    聂富强, 杜丽丽, 李景滨, 等. 碱熔-电感耦合等离子体发射光谱法(ICP-OES)测定高碳高硅钢中的硅含量[J]. 中国无机分析化学, 2015, 5(4): 74−78. doi: 10.3969/j.issn.2095-1035.2015.04.017

    Nie F Q, Du L L, Li J B, et al. Determination of silicon content in high carbon and high silicon steel by inductively coupled plasma optical emission spectrometry with sodium peroxide fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4): 74−78. doi: 10.3969/j.issn.2095-1035.2015.04.017
    [30]
    杨林, 邹国庆, 周武权, 等. 碱熔-电感耦合等离子体发射光谱(ICP-OES)法测定钨锡矿石中钨锡钼铜铅锌硫砷[J]. 中国无机分析化学, 2023, 13(11): 1191−1196. doi: 10.3969/j.issn.2095-1035.2023.11.005

    Yang L, Zou G Q, Zhou W Q, et al. Determination of W, Sn, Mo, Cu, Pb, Zn, S, and As in tungsten-tin ore by inductively coupled plasma optical emission spectrometry with alkali fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(11): 1191−1196. doi: 10.3969/j.issn.2095-1035.2023.11.005

Catalog

    Article views (99) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return