• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LI Xiaobo,LI Mingyi,ZHANG Xueming,et al. Study on Sulfate Traceability of Karst Groundwater System in Tai’an City, Shandong Province[J]. Rock and Mineral Analysis,2025,44(3):1−13. DOI: 10.15898/j.ykcs.202409110187
Citation: LI Xiaobo,LI Mingyi,ZHANG Xueming,et al. Study on Sulfate Traceability of Karst Groundwater System in Tai’an City, Shandong Province[J]. Rock and Mineral Analysis,2025,44(3):1−13. DOI: 10.15898/j.ykcs.202409110187

Study on Sulfate Traceability of Karst Groundwater System in Tai’an City, Shandong Province

More Information
  • Received Date: September 10, 2024
  • Revised Date: October 16, 2024
  • Accepted Date: October 18, 2024
  • Available Online: October 30, 2024
  • HIGHLIGHTS
    (1)The reason for the significant increase of the content of \begin{document}$\mathrm{SO}_4^{2-} $\end{document} in karst groundwater in Tai 'an City is not clear. The mathematical statistics, hydrochemical analysis and multi-isotope technology were used to trace the sulfate source.
    (2)Groundwater originates from atmospheric precipitation and is closely related to surface water hydraulics. The hydrochemical components are affected by both carbonate dissolution and industrial activities.
    (3)The research area is characterized by “dualistic structure”. The thin thickness and poor anti-fouling performance of the overlying Quaternary makes the karst groundwater vulnerable to pollution. The sewage discharge of industrial enterprises is the major controlling factor for excessive sulfate.

    In recent years, the concentration of sulfate in groundwater in northern karst areas has increased significantly, which not only poses a potential threat to human health, but also affects the safety of industrial and agricultural water and the sustainability of ecological environment. However, the pollution mechanism is still unclear. This paper studied the hydrogeochemical process of groundwater in Tai’an City, Shandong Province. In order to reveal the hydrochemical characteristics of surface water and hydrochemical process of groundwater, the mathematical statistics, hydrochemical analysis, hydrogen and oxygen isotopes (δD, δ18O-H2O) and sulfur and oxygen isotopes (δ34S-SO4, δ18O-SO4) analysis are comprehensively used. Moreover, the relationship between the increase of sulfate concentration and the hydrochemical component were discussed and the isotope characteristics and sources of sulfates were clarified. The results show that the hydrochemical type of groundwater is mainly HCO3·SO4·Cl-Ca and SO4·Cl-Na·Ca type, showing the hydrochemical components are mainly affected by the dissolution of carbonate minerals and human activities. Groundwater and surface water mainly come from atmospheric precipitation, which is affected by evaporation. The influence of evaporation intensity on surface water is higher than that on groundwater. The δ34S-SO4 and δ18O-SO4 in groundwater are between 4.5‰-8.5‰ and 2.6‰-6.6‰, respectively, which is close to the end element of sewage discharge. The analysis of the relationship between δ34S-SO4 and $\mathrm{SO}_4^{2-} $ content shows that the reduction of sulfate by bacteria in groundwater is weak, and the effect of sulfide oxidation on $\mathrm{SO}_4^{2-} $ in groundwater is also weak. $\mathrm{SO}_4^{2-} $ is mainly derived from sewage discharge of industrial enterprises.

  • [1]
    Xu B Y, Lin Y, Wu Y Z, et al. Identifying sources and transformations of nitrate in different occurrence environments of carbonate rocks using a coupled isotopic approach (δ15N, δ18O, 87Sr/86Sr) in karst groundwater system, North China[J]. The Science of the Total Environment, 2023, 912: 169300. doi: 10.1016/J.SCITOTENV.2023.169300
    [2]
    Zhang C C, Li X Q, Hou X W, et al. Characterization of drinking groundwater quality and assessment of human health risk in Xin’an Spring Basin, a typical mining and karst area of the Northern China[J]. Environmental Earth Sciences, 2023, 82: 282. doi: 10.1007/S12665-023-10994-0
    [3]
    高宗军, 鲁统民, 王敏, 等. 基于岩溶水动态的岩溶地面塌陷预测预报方法[J]. 中国岩溶, 2019, 38(5): 739−745. doi: 10.11932/karst2019y09

    Gao Z J, Lu T M, Wang M, et al. Prediction of karst ground collapse based on karst water regime[J]. Carsologica Sinica, 2019, 38(5): 739−745. doi: 10.11932/karst2019y09
    [4]
    魏凯, 王延岭, 赵志伟, 等. 泰安旧县水源地地下水位动态特征及可开采量研究[J]. 中国岩溶, 2023, 42(5): 940−955. doi: 10.11932/karst20230507

    Wei K, Wang Y L, Zhao Z W, et al. Dynamic characteristics of groundwater level and exploitable amount of groundwater source in Jiuxian County, Tai’an[J]. Carsologica Sinica, 2023, 42(5): 940−955. doi: 10.11932/karst20230507
    [5]
    梁永平, 申豪勇, 高旭波. 中国北方岩溶地下水的研究进展[J]. 地质科技通报, 2022, 41(5): 199−219. doi: 10.19509/j.cnki.dzkq.2022.0199

    Liang Y P, Shen H Y, Gao X B. Review of research progress of karst groundwater in Northern China[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 199−219. doi: 10.19509/j.cnki.dzkq.2022.0199
    [6]
    Li Y G, Li M L, Song X Q, et al. An integrated approach combining LISA, BI-LISA, and the modified COPK method to improve groundwater management in large-scale karst areas[J]. Journal of Hydrology, 2023, 625: 130111. doi: 10.1016/J.JHYDROL.2023.130111
    [7]
    Lin Y, Ren H X, Wu Y Z, et al. The evolution of hydrogeochemical characteristics of a typical piedmont karst groundwater system in a coal-mining area, Northern China[J]. Environmental Earth Sciences, 2019, 78: 557. doi: 10.1007/s12665-019-8563-y
    [8]
    Chen S, Xue Q Z, Yan W S, et al. Hydrochemical characteristics and evolution processes of karst groundwater in Pingyin karst groundwater system, North China[J]. Environmental Earth Sciences, 2023, 82(2): 67. doi: 10.1007/s12665-022-10717-x
    [9]
    靳孟贵, 张结, 张志鑫, 等. 地下水硫酸盐溯源的进展、问题和发展趋势[J]. 地质科技通报, 2022, 41(5): 160−171. doi: 10.19509/j.cnki.dzkq.2022.0161

    Jin M G, Zhang J, Zhang Z X, et al. A review on source identification of dissolved sulfate in groundwater: Advances, problems and development trends[J]. Bulletin of Geological Science and Technology, 2022, 41(5): 160−171. doi: 10.19509/j.cnki.dzkq.2022.0161
    [10]
    高旭波, 王万洲, 侯保俊, 等. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3): 287−298. doi: 10.11932/karst2020y25

    Gao X B, Wang W Z, Hou B J, et al. Analysis of karst groundwater pollution in Northern China[J]. Carsologica Sinica, 2020, 39(3): 287−298. doi: 10.11932/karst2020y25
    [11]
    张海林, 王重, 逄伟, 等. 硫氧同位素示踪污染物来源在济南岩溶水中的应用[J]. 中国地质调查, 2019, 6(1): 75−80. doi: 10.19388/j.zgdzdc.2019.01.11

    Zhang H L, Wang Z, Pang W, et al. Using sulfur and oxygen isotope to trace the source of sulphate in Baotuquan spring area of Jinan[J]. Geological Survey of China, 2019, 6(1): 75−80. doi: 10.19388/j.zgdzdc.2019.01.11
    [12]
    Gao M, Li X Q, Qian J Z, et al. Hydrogeochemical characteristics and evolution of karst groundwater in Heilongdong Spring Basin, Northern China[J]. Water, 2023, 15: 726. doi: 10.3390/W15040726
    [13]
    Gong X H, Zhou Z F, Su D, et al. Sulfur-oxygen isotope analysis of $\mathrm{SO}_4^{2-} $ sources in cave dripwater and their influence on the karst carbon cycle[J]. Environmental Research, 2024, 240: 117508. doi: 10.1016/J.ENVRES.2023.117508
    [14]
    Jiang C L, Cheng L L, Li C, et al. A hydrochemical and multi-isotopic study of groundwater sulfate origin and contribution in the coal mining area[J]. Ecotoxicology and Environmental Safety, 2022, 248: 114286. doi: 10.1016/J.ECOENV.2022.114286
    [15]
    李伟, 耿函, 苏春利, 等. 大冶铁矿区地下水水化学演化过程及铁和硫酸盐污染机制[J]. 安全与环境工程, 2023, 30(2): 223−232. doi: 10.13578/i.cnki.issn.1671-1556.20221394

    Li W, Geng H, Su C L, et al. Hydrochemical evolution processes and mechanism groundwater iron and sulfate pollution in Daye mining area[J]. Safety and Environmental Engineering, 2023, 30(2): 223−232. doi: 10.13578/i.cnki.issn.1671-1556.20221394
    [16]
    林云, 熊慧敏, 武亚遵, 等. 太行山前倾斜平原地下水硫酸盐来源解析[J]. 环境科学与技术, 2023, 46(1): 144−151. doi: 10.19672/j.cnki.1003-6504.1866.22.338

    Lin Y, Xiong H M, Wu Y Z, et al. Source analysis of groundwater sulfate in inclined plain in front of Taihang Mountain[J]. Environmental Science & Technology, 2023, 46(1): 144−151. doi: 10.19672/j.cnki.1003-6504.1866.22.338
    [17]
    Sun J, Kobayashi T, Strosnider W H, et al. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters[J]. Journal of Hydrology, 2017, 551: 245−252. doi: 10.1016/j.jhydrol.2017.06.006
    [18]
    邹霜, 张东, 李小倩, 等. 豫北山前平原深层地下水硫酸盐来源与污染途径的同位素示踪[J]. 地球科学, 2022, 47(2): 700−716. doi: 10.3799/dqkx.2021.043

    Zou S, Zhang D, Li X Q, et al. Sources and pollution pathways of deep groundwater sulfate underneath the piedmont plain in the North Henan Province[J]. Earth Science, 2022, 47(2): 700−716. doi: 10.3799/dqkx.2021.043
    [19]
    Zhang J, Jin M G, Cao M D, et al. Sources and behaviors of dissolved sulfate in the Jinan karst spring catchment in Northern China identified by using environmental stable isotopes and a Bayesian isotope-mixing model[J]. Applied Geochemistry, 2021, 134: 105109. doi: 10.1016/j.apgeochem.2021.105109
    [20]
    董莘, 马强, 徐立荣. 基于硫氧同位素的菏泽市主要河流硫酸盐来源解析[J]. 水生态学杂志, 2024, 45(5): 151−158. doi: 10.15928/j.1674-3075.202211020438

    Dong X, Ma Q, Xu L R. Source analysis of sulfate in the major rivers of Heze City based on stable sulfur and oxygen isotopes[J]. Journal of Hydroecology, 2024, 45(5): 151−158. doi: 10.15928/j.1674-3075.202211020438
    [21]
    高菡, 宋一心, 刘博瀚, 等. 山东省泰安市岩溶地下水系统划分及循环模式分析[J]. 水利水电快报, 2024, 45(2): 29−33, 43. doi: 10.15974/j.cnki.slsdkb.2024.02.005

    Gao H, Song Y X, Liu B H, et al. Analysis on division of karst groundwater system and its circulation model in Tai’an City, Shandong Province[J]. Express Water Resources & Hydropower Information, 2024, 45(2): 29−33, 43. doi: 10.15974/j.cnki.slsdkb.2024.02.005
    [22]
    汪云, 杨海博, 徐建, 等. 基于长短期记忆神经网络模型的地下水水位预测研究[J]. 节水灌溉, 2019(10): 73−77. doi: 1007-4929(2019)10-0073-05

    Wang Y, Yang H B, Xu J, et al. Groundwater level prediction based on long-short-term memory neural network model[J]. Water Saving lrrigation, 2019(10): 73−77. doi: 1007-4929(2019)10-0073-05
    [23]
    刘元晴, 周乐, 马雪梅, 等. 莱芜盆地地下水开发利用中的环境地质问题及成因[J]. 干旱区资源与环境, 2020, 34(11): 118−124. doi: 10.13448/j.cnki.jalre.2020.307

    Liu Y Q, Zhou L, Ma X M, et al. Environmental geological problems and causes during development and utilization of groundwater in Laiwu Basin, Shandong Province[J]. Journal of Arid Land Resources and Environment, 2020, 34(11): 118−124. doi: 10.13448/j.cnki.jalre.2020.307
    [24]
    孟令华. 基于水化学和氢氧同位素的泰安城区岩溶地下水补给来源及演化过程[J]. 环境科学, 2024, 45(4): 2096−2106. doi: 10.13227/j.hjkx.202305012

    Meng L H. Recharge source and evolution process of karst groundwater in Tai’an urban area based on hydrochemistry and hydrogen and oxygen isotopes[J]. Environmental Science, 2024, 45(4): 2096−2106. doi: 10.13227/j.hjkx.202305012
    [25]
    孟令华, 孔德金, 王磊, 等. 泰安市城区地下水重金属含量及健康风险评价[J]. 干旱区资源与环境, 2022, 36(12): 113−118. doi: 10.13448/j.cnki.jalre.2022.309

    Meng L H, Kong D J, Wang L, et al. The heavy metal content and health risk assessment of groundwater in urban area of Tai’an[J]. Journal of Arid Land Resources and Environment, 2022, 36(12): 113−118. doi: 10.13448/j.cnki.jalre.2022.309
    [26]
    程娇. 宁阳县胡中屯水源地环境保护问题研究[D]. 泰安: 山东农业大学, 2015: 19-30.

    Cheng J. Study on water environment protection of the Huzhongtun water source, Ningyang County [D]. Tai’an: Shandong Agricultural University, 2015: 19-30.
    [27]
    李晓波, 赵新村, 李明毅, 等. 泰安市城区岩溶地下水水化学特征及成因分析[J]. 山东国土资源, 2022, 38(9): 23−31. doi: 10.12128/j.issn.1672-6979.2022.09.004

    Li X B, Zhao X C, Li M Y, et al. Hydrochemical characteristics and formation analysis of karst groundwater in district area of Tai’an City[J]. Shandong Land and Resources, 2022, 38(9): 23−31. doi: 10.12128/j.issn.1672-6979.2022.09.004
    [28]
    张寿川, 刘凯, 王路瑶, 等. 江西洪江—钱山断裂带中低温高氟地热水水文地球化学特征与成因机制[J]. 岩矿测试, 2024, 43(4): 568−581. doi: 10.15898/j.ykcs.202403030028

    Zhang S C, Liu K, Wang L Y, et al. Identifying the hydrochemical characteristics and genetic mechanism of medium-low temperature fluoride-enriched geothermal groundwater in the Hongjiang—Qianshan Fault of Jiangxi Province[J]. Rock and Mineral Analysis, 2024, 43(4): 568−581. doi: 10.15898/j.ykcs.202403030028
    [29]
    刘贯群, 李熊, 张淑琪. 黄水河下游地区地下水化学特征及演化规律[J]. 海洋湖沼通报(中英文), 2024, 46(4): 42−52. doi: 10.13984/j.cnki.cn37-1141.2024.04.006

    Liu G Q, Li X, Zhang S Q. Hydrochemical characteristics and evolution mechanisms of the groundwater in the lower reaches of Hang Shui River[J]. Transactions of Oceanology and Limnology, 2024, 46(4): 42−52. doi: 10.13984/j.cnki.cn37-1141.2024.04.006
    [30]
    李晓波, 李杭, 杨宝萍, 等. 泰安市旧县水源地水化学特征及成因分析[J]. 环境工程技术学报, 2022, 12(6): 2002−2010. doi: 10.12153/j.issn.1674-991X.20210593

    Li X B, Li H, Yang B P, et al. Hydrochemical characteristics and formation mechanism of water source area in Jiuxian County, Tai’an City[J]. Journal of Environmental Engineering Technology, 2022, 12(6): 2002−2010. doi: 10.12153/j.issn.1674-991X.20210593
    [31]
    Gibbs J R. Mechanisms controlling world water chemistry[J]. Science, 1970, 3692: 1088−1090. doi: 10.1126/science.170.3962.1088
    [32]
    李星辰, 王婷, 李晓波, 等. 肥城市城区水源地水化学特征及影响因素分析[J]. 环境工程, 2023, 41(S2): 108−113.

    Li X C, Wang T, Li X B, et al. Hydrochemistry characteristics and formation mechanism of water source in urban area of Feicheng[J]. Environmental Engineering, 2023, 41(S2): 108−113.
    [33]
    刘海, 宋阳, 李迎春, 等. 长江流域安庆段浅层地下水水化学特征及控制因素[J]. 环境科学, 2024, 45(3): 1525−1538. doi: 10.13227/j.hjkx.202304087

    Liu H, Song Y, Li Y C, et al. Hydrochemical characteristics and control factors of shallow groundwater in Anqing section of the Yangtze River Basin[J]. Environmental Science, 2024, 45(3): 1525−1538. doi: 10.13227/j.hjkx.202304087
    [34]
    李晓波, 李静. 大汶河流域中下游浅层地下水水化学特征及其影响因素[J]. 环境科学研究, 2024, 37(5): 1015−1026. doi: 10.13198/j.issn.1001-6929.2024.02.10

    Li X B, Li J. Hadrochemical characteristics and Influencing factors of shallow groundwater in the middle and lower reaches of the Dawen River Basin[J]. Research of Environmental Sciences, 2024, 37(5): 1015−1026. doi: 10.13198/j.issn.1001-6929.2024.02.10
    [35]
    王楠, 胥芹, 孙小艳, 等. 趵突泉泉域岩溶水化学特征及成因研究[J]. 中国岩溶, 2024, 43(2): 279−290. doi: 10.11932/karst20240203

    Wang N, Xu Q, Sun X Y, et al. Hydrochemical characteristics and formation mechanism of karst water in Baotu Spring Watershed[J]. Carsologica Sinica, 2024, 43(2): 279−290. doi: 10.11932/karst20240203
    [36]
    孟瑞芳, 杨会峰, 白华, 等. 海河流域大清河平原区地下水化学特征及演化规律分析[J]. 岩矿测试, 2023, 42(2): 383−395. doi: 10.15898/j.cnki.11-2131/td.202207010121

    Meng R F, Yang H F, Bai H, et al. Chemical characteristics and evolutionary patterns of groundwater in the Daqing River Plain area of Haihe Basin[J]. Rock and Mineral Analysis, 2023, 42(2): 383−395. doi: 10.15898/j.cnki.11-2131/td.202207010121
    [37]
    王荷英, 吴贻创, 杨应增, 等. 裸露型岩溶区人类活动输入对地下河水化学的影响[J]. 地球与环境, 2024, 52(4): 466−478. doi: 10.14050/i.cnki.1672-9250.2024.52.004

    Wang H Y, Wu Y C, Yang Y Z, et al. Rivers in bare karst area impact of anthropogenic activities on the hydrochemistry of subterranean[J]. Earth and Environment, 2024, 52(4): 466−478. doi: 10.14050/i.cnki.1672-9250.2024.52.004
    [38]
    Baloch J, Zhang M Y. Shallow groundwater quality assessment and its suitability analysis for drinking and irrigation purposes[J]. Water, 2021, 13: 3361. doi: 10.3390/w13233361
    [39]
    李丽君, 刘强. 黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析[J]. 岩矿测试, 2023, 42(4): 809−822. doi: 10.15898/j.ykcs.202208270160

    Li L J, Liu Q. Distribution characteristics and source analysis of “three nitrogen” in shallow groundwater in Hailun area of Heilongjiang Province[J]. Rock and Mineral Analysis, 2023, 42(4): 809−822. doi: 10.15898/j.ykcs.202208270160
    [40]
    Yan X X, Wei S C, Zhang W, et al. Reservoirs and hydrogeochemical characterizations of the Yanggao geothermal field in Shanxi Province, China[J]. Water, 2024, 16(5): 669. doi: 10.3390/w16050669
    [41]
    韦欣, 于一雷, 李文彦, 等. 妫水河流域水化学和同位素特征及其指示意义[J]. 环境科学与技术, 2024, 47(3): 135−145. doi: 10.19672/j.cnki.1003-6504.2453.23.338

    Wei X, Yu Y L, Li W Y, et al. Hydrochemistry and isotopic characteristics of Guishui River Basin and their indicative significance[J]. Environmental Science & Technology, 2024, 47(3): 135−145. doi: 10.19672/j.cnki.1003-6504.2453.23.338
    [42]
    Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702−1703. doi: 10.1126/science.133.3465.1702
    [43]
    蒋芳婷, 孟玉川, 宋泓苇, 等. 淮河下游地区地表水与地下水同位素特征分析[J]. 水文, 2022, 42(1): 90−96. doi: 10.19797/j.cnki.1000-0852.20210019

    Jiang F T, Meng Y C, Song H W, et al. Analysis of isotopic characteristics of surface water and groundwater in the lower reaches of Huaihe River[J]. Journal of China Hydrology, 2022, 42(1): 90−96. doi: 10.19797/j.cnki.1000-0852.20210019
    [44]
    刘治政, 李双, 刘柏含, 等. 淄博市刘征水源地西张井群岩溶地下水硫酸盐溯源分析[J]. 中国岩溶, 2023, 42(5): 1074−1084. doi: 10.11932/karst20230517

    Liu Z Z, Li S, Liu B H, et al. Source-tracing of sulfate in groundwater of Xizhang well group in the Liuzheng water source area of Zibo City[J]. Carsologica Sinica, 2023, 42(5): 1074−1084. doi: 10.11932/karst20230517
    [45]
    Cheng L L, Jiang C L, Li C, et al. Tracing sulfate source and transformation in the groundwater of the Linhuan coal mining area, Huaibei coalfield, China[J]. International Journal of Environmental Research and Public Health, 2022, 19(21): 14434. doi: 10.3390/ijerph192114434
    [46]
    Qu S, Zhao Y Z, Zhang K Y, et al. Multi-isotopes (δD, δ18Owater, 87Sr/86Sr, δ34S and δ18O sulfate) as indicators for groundwater salinization genesis and evolution of a large agricultural drainage lake basin in Inner Mongolia, Northwest China[J]. The Science of the Total Environment, 2024, 946: 174181. doi: 10.1016/j.scitotenv.2024.174181
    [47]
    马燕华, 苏春利, 刘伟江, 等. 水化学和环境同位素在示踪枣庄市南部地下水硫酸盐污染源中的应用[J]. 环境科学, 2016, 37(12): 4690−4699.

    Ma Y H, Su C L, Liu W J, et al. Identification of sulfate sources in the groundwater system of Zaozhuang: Evidences from isotopic and hydrochemical characteristics[J]. Environmental Science, 2016, 37(12): 4690−4699.
    [48]
    韩珣, 任杰, 陈善莉, 等. 基于硫氧同位素研究南京北郊夏季大气中硫酸盐来源及氧化途径[J]. 环境科学, 2018, 39(5): 2010−2014. doi: 10.13227/i.hjkx.201709111

    Han X, Ren J, Chen S L, et al. Sulfur sources and oxidation pathways in summer aerosols from Nanjing Northern Suburbs using S and O isotopes[J]. Environmental Science, 2018, 39(5): 2010−201. doi: 10.13227/i.hjkx.201709111
    [49]
    Torres-Martínez J A, Mora A, Mahlknecht J, et al. Determining nitrate and sulfate pollution sources and transformations in a coastal aquifer impacted by seawater intrusion: A multi-isotopic approach combined with self-organizing maps and a Bayesian mixing model[J]. Journal of Hazardous Materials, 2021, 417: 126103. doi: 10.1016/j.jhazmat.2021.126103
    [50]
    Torres-Martínez J A, Mora A, Knappett P S K, et al. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model[J]. Water Research, 2020, 182: 115962. doi: 10.1016/j.watres.2020.115962

Catalog

    Article views (48) PDF downloads (18) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return