• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LIU Zeyang,XU Chun,SUN Shuhai. Aquatic Toxicity and Ecological Risk Assessment of Chlorophenol Insecticides[J]. Rock and Mineral Analysis,2024,x(x):1−12. DOI: 10.15898/j.ykcs.202407190161
Citation: LIU Zeyang,XU Chun,SUN Shuhai. Aquatic Toxicity and Ecological Risk Assessment of Chlorophenol Insecticides[J]. Rock and Mineral Analysis,2024,x(x):1−12. DOI: 10.15898/j.ykcs.202407190161

Aquatic Toxicity and Ecological Risk Assessment of Chlorophenol Insecticides

More Information
  • Received Date: July 18, 2024
  • Revised Date: September 03, 2024
  • Accepted Date: September 06, 2024
  • Available Online: October 10, 2024
  • Chlorophenols (CPs) are widely present in surface water and groundwater environments. They are one of the persistent pollutants in the environment. CPs in the water environment have a high half-life and are easily absorbed and enriched by aquatic organisms, causing toxic effects and harming aquatic organisms. This article aims to quantitatively identify the aquatic toxicity effects of CPs, assess potential ecological risks, and anticipate using source modification as a means to reduce and replace its ecological risks. The homology modeling and molecular docking method coupled with the simple formula scoring method was used to quantify the comprehensive aquatic toxicity effect of CPs molecules, and based on this, a 3D-QSAR model of the comprehensive effects on aquatic organisms was completed; and then molecular dynamics simulation technology was used to complete the CPs simulation verification of cumulative effects. Coupling the multi-dimensional assessment of functionality, environmental friendliness, and food chain cumulative risk, this article screened out low aquatic toxicity CPs alternatives that are both functional and environmentally friendly. The results of this research can provide a new perspective for the toxic effects and ecological risk assessment of CPs molecules, and provide theoretical support for the development of technology for environmentally friendly modification of CPs molecules.

  • [1]
    褚莹倩, 陈溪, 张晓林, 等. 中国地表水环境中药物与个人护理品生态风险评价的研究进展[J]. Asian Journals of Ecotoxicology, 2021, 16(4): 80−92. doi: 10.7524/AJE.1673-5897.20201010001

    Chu Y Q, Chen X, Zhang X L, et al. Ecological risk assessment of pharmaceutical and personal care products in the surface water of China: A review[J]. Asian Journal of Ecotoxicology, 2021, 16(4): 80−92. doi: 10.7524/AJE.1673-5897.20201010001
    [2]
    Manna S, Gopakumar D A, Roy D, et al. 20-nanobiomaterials for removal of fluoride and chlorophenols from water[J]. New Polymer Nanocomposites for Environmental Remediation, 2018, 487−498. doi: 10.1016/B978-0-12-811033-1.00020-2
    [3]
    Santhi V S, Salame L, Muklada H, et al. Toxicity of phenolic compounds to entomopathogenic nematodes: A case study with Heterorhabditis bacteriophora exposed to lentisk (Pistacia lentiscus) extracts and their chemical components[J]. Journal of Invertebrate Pathology, 2019, 160: 43−53. doi: 10.1016/j.jip.2018.12.003
    [4]
    于开宁, 王润忠, 刘丹丹. 水环境中新污染物快速检测技术研究进展[J]. 岩矿测试, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018

    Yu K N, Wang R Z, Liu D D. A review of rapid detections for emerging contaminants in groundwater[J]. Rock and Mineral Analysis, 2023, 42(6): 1063−1077. doi: 10.15898/j.ykcs.202302080018
    [5]
    姚慧敏, 陆天启, 钟奕昕, 等. 中国西沙海域永兴岛—七连屿海域鱼体内有机污染物含量特征与来源解析及风险评价[J]. 岩矿测试, 2024, 43(1): 152−165. doi: 10.15898/j.ykcs.202304280057

    Yao H M, Lu T Q, Zhong Y X, et al. Concentration and distribution of organic pollutants in fish of Yongxing and Qilianyu Islands, Xisha, China[J]. Rock and Mineral Analysis, 2024, 43(1): 152−165. doi: 10.15898/j.ykcs.202304280057
    [6]
    Singh A K, Chandra R. Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards[J]. Aquatic Toxicology, 2019, 211: 202−216. doi: 10.1016/j.aquatox.2019.04.007
    [7]
    李忠煜, 李艳广, 黎卫亮, 等. 衍生化气相色谱-质谱法测定复垦土地样品中19种酚类污染物[J]. 岩矿测试, 2021, 40(2): 239−249. doi: 10.15898/j.cnki.11-2131/td.202007080101

    Li Z Y, Li Y G, Li W L, et al. Determination of 19 phenolic pollutants in reclaimed land samples by derivation gas chromatography-mass spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 239−249. doi: 10.15898/j.cnki.11-2131/td.202007080101
    [8]
    甄一尘. 新型管式磁膜光催化反应体系对氯酚废水的降解效果与机制研究[D]. 保定: 河北大学, 2020.

    Zhen Y C. A novel tubular up-flow magnetic film photocatalytic system optimized by main factors control for efficient removal of chlorophenols wastewater[D]. Baoding: Hebei University, 2020.
    [9]
    黄轶昕. 我国灭螺药物研究和现场应用[J]. 中国血吸虫病防治杂志, 2019, 31(6): 679−684. doi: 10.16250/j.32.1374.2019080

    Huang Y X. Research and field application of molluscicides in China[J]. Chinese Journal of Schistosomiasis Control, 2019, 31(6): 679−684. doi: 10.16250/j.32.1374.2019080
    [10]
    堵锡华, 王超. 醇和酚类污染物对欧洲林蛙蝌蚪及梨形四膜虫毒性的定量结构-活性模型[J]. 生态毒理学报, 2018, 13(6): 250−258. doi: 10.7524/AJE.1673-5897.20171221002

    Du X H, Wang C. Quantitative structure-activity modelof toxicity of aleohol and phenolic pollutants to Ranatemporaria tadpoles and Tetrahymena pyriformis[J]. Asian Journal of Eeotoxicology, 2018, 13(6): 250−258. doi: 10.7524/AJE.1673-5897.20171221002
    [11]
    Erchao L, Bolser D G, Kroll K J, et al. Comparative toxicity of three phenolic compounds on the embryo of fathead minnow, pimephales promelas[J]. Aquatic Toxicology, 2018, 201: 66. doi: 10.1016/j.aquatox.2018.05.024
    [12]
    余晋霞, 郭婧怡, 高宇, 等. 五氯酚毒理学研究进展[J]. 环境卫生学杂志, 2019, 9(6): 614−620. doi: 10.13421/j.cnki.hjwsxzz.2019.06.018

    Yu J X, Guo J Y, Gao Y, et al. Research advances in toxicology of pentachlorophenol[J]. Journal of Environmental Hygiene, 2019, 9(6): 614−620. doi: 10.13421/j.cnki.hjwsxzz.2019.06.018
    [13]
    王选瑞, 张立娟, 王玉田, 等. 三维荧光结合二阶校正快速测定水中酚类[J]. 光谱学与光谱分析, 2020, 40(1): 113−118. doi: 10.3964/j.issn.1000-0593(2020)01-0113-06

    Wang X R, Zhang L J, Wang Y T, et al. Rapid determination of phenol in water by three-dimensional fluorescence combined with second-order calibration[J]. Spectroscopy and Spectral Analysis, 2020, 40(1): 113−118. doi: 10.3964/j.issn.1000-0593(2020)01-0113-06
    [14]
    Pollack A Z, Mumford S L, Krall J R, et al. Urinary levels of environmental phenols and parabens and antioxidant enzyme activity in the blood of women[J]. Environmental Research, 2020, 186: 109507. doi: 10.1016/j.envres.2020.109507
    [15]
    Keith L, Telliard W. ES&T special report: Priority pollutants: Ⅰ—A perspective review[J]. Environmental Science & Technology, 1979, 13(4): 416−423. doi: 10.1021/es60152a601
    [16]
    Ishihara A, Sawatsubashi S, Yamauchi K. Endocrine disrupting chemicals: Interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors[J]. Molecular and Cellular Endocrinology, 2003, 199(1-2): 105−117. doi: 10.1016/S0303-7207(02)00302-7
    [17]
    Rybnikova V, Singhal N, Hanna K. Remediation of an aged PCP-contaminated soil by chemical oxidation under flow-through conditions[J]. Chemical Engineering Journal, 2017, 314: 202−211. doi: 10.1016/j.cej.2016.12.120
    [18]
    Chacón F J, Cayuela M L, Cederlund H, et al. Overcoming biochar limitations to remediate pentachlorophenol in soil by modifying its electrochemical properties[J]. Journal of Hazardous Materials, 2022, 426: 127805. doi: 10.1016/j.jhazmat.2021.127805
    [19]
    Ammeri R W, Simeone G D R, Hidri Y, et al. Combined bioaugmentation and bio-stimulation techniques in bioremediation of pentachlorophenol contaminated forest soil[J]. Chemosphere, 2022, 290: 133359. doi: 10.1016/j.chemosphere.2021.133359
    [20]
    郭耀广, 关杰, 顾卫星. 氯酚类化合物的污染现状及去除方法研究进展[J]. 上海第二工业大学学报, 2016, 33(3): 198−207. doi: 10.3969/j.issn.1001-4543.2016.03.007

    Guo Y G, Guan J, Gu W X. Progress in pollution and removal of chlorophenol compounds[J]. Journal of Shanghai Polytechnic University, 2016, 33(3): 198−207. doi: 10.3969/j.issn.1001-4543.2016.03.007
    [21]
    曹文庚, 王妍妍, 张亚南, 等. 含微塑料地下水的污染现状, 环境风险及其发展趋势[J/OL]. 中国地质(2024-01-30). https://link.cnki.net/urlid/11.1167.P.20240130.1025.004

    Cao W G, Wang Y Y, Zhang Y N, et al. Pollution status, environmental risk and development trend of groundwater containing microplastics[J/OL]. Geology in China(2024-01-30). https://link.cnki.net/urlid/11.1167.P.20240130.1025.004
    [22]
    Kim S, Chen J, Cheng T, et al. PubChem 2023 update[J]. Nucleic Acids Research, 2023, 51(D1): D1373−D1380. doi: 10.1093/nar/gkac956
    [23]
    Gu W W, Zhao Y Y, Li Q, et al. Plant-microorganism combined remediation of polychlorinated naphthalenes contaminated soils based on molecular directed transformation and Taguchi experimental design-assisted dynamics simulation[J]. Journal of Hazardous Materials, 2020, 396: 122753. doi: 10.1016/j.jhazmat.2020.122753
    [24]
    Li X X, He W, Zhao Y Y, et al. Dermal exposure to synthetic musks: Human health risk assessment, mechanism, and control strategy[J]. Ecotoxicology and Environmental Safety, 2022, 236: 113463. doi: 10.1016/j.ecoenv.2022.113463
    [25]
    Ren Z X, Zhao Y Y, Han S, et al. Regulatory strategies for inhibiting horizontal gene transfer of ARGs in paddy and dryland soil through computer-based methods[J]. Science of the Total Environment, 2023, 856: 159096. doi: 10.1016/j.scitotenv.2022.159096
    [26]
    Zhao Y Y, Ren Z X, Yang H, et al. A novel multi-criteria framework for optimizing ecotoxicological effects and human health risks of neonicotinoid insecticides: Characterization, assessment and regulation strategies[J]. Journal of Hazardous Materials, 2022, 432: 128712. doi: 10.1016/j.jhazmat.2022.128712
    [27]
    Mandels M, Reese E T. Inhibition of cellulases[J]. Annual Review of Phytopathology, 1965, 3(1): 85−102. doi: 10.1146/annurev.py.03.090165.000505
    [28]
    余丽琴, 赵高峰, 冯敏, 等. 典型氯酚类化合物对水生生物的毒性研究进展[J]. 生态毒理学报, 2013, 8(5): 658−670. doi: 10.7524/AJE.1673-5897.20130105001

    Yu L Q, Zhao G F, Feng M, et al. Toxicological effects of typical chlorophenol chemicals on aquatic organisms[J]. Asian Journal of Ecotoxicology, 2013, 8(5): 658−670. doi: 10.7524/AJE.1673-5897.20130105001
    [29]
    Zhang M, Yin D Q, Kong F X. The changes of serum testosterone level and hepatic microsome enzyme activity of crucian carp (Carassius carassius) exposed to a sublethal dosage of pentachlorophenol[J]. Ecotoxicology and Environmental Safety, 2008, 71(2): 384−389. doi: 10.​1016/j.​ecoenv.​2007.​10.​014
    [30]
    van den Berg K J. Interaction of chlorinated phenols with thyroxine binding sites of human transthyretin, albumin and thyroid binding globulin[J]. Chemico-Biological Interactions, 1990, 76(1): 63−75. doi: 10.1016/0009-2797(90)90034-K
    [31]
    Likert R, Roslow S, Murphy G. A simple and reliable method of scoring the Thurstone attitude scales[J]. Personnel Psychology, 1993, 46(3): 689−690. doi: 10.1111/j.1744-6570.1993.tb00893.x
    [32]
    Faber D S, Korn H. Applicability of the coefficient of variation method for analyzing synaptic plasticity[J]. Biophysical Journal, 1991, 60(5): 1288−1294. doi: 10.1016/S0006-3495(91)82162-2
    [33]
    Gu W W, Zhao Y Y, Li Q, et al. Environmentally friendly polychlorinated naphthalenes (PCNs) derivatives designed using 3D-QSAR and screened using molecular docking, density functional theory and health-based risk assessment[J]. Journal of Hazardous Materials, 2019, 363: 316−327. doi: 10.1016/j.jhazmat.2018.09.060
    [34]
    Li X X, Gu W W, Chen B, et al. Functional modification of HHCB: Strategy for obtaining environmentally friendly derivatives[J]. Journal of Hazardous Materials, 2021, 416: 126116. doi: 10.1016/j.jhazmat.2021.126116
    [35]
    Tropsha A. Best practices for QSAR model development, validation, and exploitation[J]. Molecular Informatics, 2010, 29(6-7): 476−488. doi: 10.​1002/​minf.​20100​0061
    [36]
    Zhao Y Y, Li Y. Design of environmentally friendly neonicotinoid insecticides with bioconcentration tuning and Bi-directional selective toxic effects[J]. Journal of Cleaner Production, 2019, 221: 113−121. doi: 10.​1016/j.​jclep​ro.​2019.​02.​156
    [37]
    Salahinejad M, Ghasemi J B. 3D-QSAR studies on the toxicity of substituted benzenes to Tetrahymena pyriformis: CoMFA, CoMSIA and VolSurf approaches[J]. Ecotoxicology and Environmental Safety, 2014, 105: 128−134. doi: 10.1016/j.ecoenv.2013.11.019
    [38]
    Zeng X L, Qu R J, Feng M B, et al. Photodegradation of polyfluorinated dibenzo-p-dioxins in organic solvents: experimental and theoretical studies[J]. Environmental Science & Technology, 2016, 50(15): 8128−8134. doi: 10.1021/acs.est.6b02682
    [39]
    Bearden A P, Sinks G D, Schultz T W. Acclimation to sublethal exposures to a model nonpolar narcotic: Population growth kinetics and membrane lipid alterations in tetrahymena pyriformis[J]. Aquatic Toxicology, 1999, 46(1): 11−21. doi: 10.1016/S0166-445X(98)00110-6
    [40]
    佟立丹. 基于3D-QSAR技术的多氯苯酚分子修饰及其性能研究[D]. 吉林: 长春理工大学, 2017.

    Tong L D. Modification of polychlorinated phenols and evaluation of their toxicity, biodegradation and bioconcentration using three-dimensional quantitative structure-activity relationship models[D]. Jilin: Changchun University of Science and Technology, 2017.
    [41]
    KarmenV, Bojana B, Margareta V, et al. Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes versicolor and the brown-rot Coniophora puteana[J]. International Biodeterioration & Biodegradation, 2003, 51: 51−59.
    [42]
    Karam J, Nicell J A. Potential applications of enzymes in waste treatment[J]. Journal of Chemical Technology & Biotechnology, 1997, 69(2): 141-153.
    [43]
    Sun S H, Liu Z Y, Li Q, et al. Molecular design of environment-friendly chlorophenol (CP) derivatives based on 3D-QSAR assisted with a comprehensive evaluation method combining bioaccumulation and degradation[J]. Environmental Science and Pollution Research, 2023, 30(35): 83643−83656. doi: 10.1007/s11356-023-28322-1

Catalog

    Article views (33) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return