Citation: | GUO Jiafan,CHEN Xiaoyu,SUN Yong,et al. Ultratrace Platinum Group Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulfide Fire Assay[J]. Rock and Mineral Analysis,2024,43(5):693−702. DOI: 10.15898/j.ykcs.202407180159 |
Pt, Pd, Rh, Ir, Os and Ru are platinum group elements (PGEs) with similar properties. Due to the low abundance as well as the nugget effect, the accurate determination of PGEs has been a challenge for rock and mineral analysis. Fire assay methods with large sample weights were developed to separate and preconcentrate PGEs, however, there are still difficulties to accurately determine ultratrace PGEs because of the high reagent blanks and the matrix effect. A method of nickel sulfide fire assay combined with ICP-MS simultaneous determination of ultratrace PGEs in samples was established. The results showed that the blank mainly comes from hydrochloric acid and nickel collector when using nickel sulfide fire assay to capture PGEs. The intensities of PGEs were detected by ICP-MS in standard mode and kinetic energy discrimination. In standard mode, the detection limits were 0.2ng/g for Pt and Pd, and 0.02ng/g for Rh, Ir and Os, but it couldn’t reach 0.1ng/g for Ru. In kinetic energy discrimination, the background equivalent concentration of Ru was two orders of magnitude lower than that in the standard mode. With the matrix effect of Ni effectively eliminated, the detection limits reached 0.005ng/g for Ru. The detection limits for PGEs required by geochemical exploration were achieved. The certified reference materials of soil (GBW07288, GBW07294) and stream sediment (GBW07289) were analyzed to test the method. The determined values were in good agreement with the certified values. The relative errors were between −10.9% and 11.8%, the relative standard deviations (RSD,
[1] |
王烨, 于亚辉, 王琳, 等. 地质样品中贵金属元素的预处理方法研究进展[J]. 岩矿测试, 2020, 39(1): 15−29. doi: 10.15898/j.cnki.11-2131/td.201905160064
Wang Y, Yu Y H, Wang L, et al. Research progress on pretreatment methods for analysis of precious metal elements in geological samples[J]. Rock and Mineral Analysis, 2020, 39(1): 15−29. doi: 10.15898/j.cnki.11-2131/td.201905160064
|
[2] |
Chandhuri H, Lim C R, Yun Y S. Amino- and sulfur-containing POSS for highly efficient and selective extraction of platinum group elements from acidic solution[J]. Journal of Ceaner Qroduction, 2024, 434: 139912. doi: 10.1016/j.jclepro.2023.139912
|
[3] |
杨生鸿, 张明, 辛连君. 电感耦合等离子体质谱(ICP-MS)法测定碳质板岩样品中铂族元素[J]. 中国无机分析化学, 2019, 9(2): 42−45. doi: 10.3969/j.issn.2095-1035.2019.02.009
Yang S H, Zhang M, Xin L J. Determination of platinum group elements in graphite rock samples by ICP-MS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(2): 42−45. doi: 10.3969/j.issn.2095-1035.2019.02.009
|
[4] |
Mosai A K, Tutu H. Adsorption of platinum group elements (Pd(Ⅱ), Ir(Ⅲ) and Rh(Ⅲ) from aqueous solutions using 3-aminopropyl(diethoxy)methylsilane (APDEMS) functionalised bentonite[J]. Minerals Engineering, 2022, 176: 107342. doi: 10.1016/j.mineng.2021.107342
|
[5] |
刘杨, 范兴祥, 董海刚, 等. 贵金属物料的溶解技术及进展[J]. 贵金属, 2013, 34(4): 65−72. doi: 10.3969/j.issn.1004-0676.2013.04.015
Liu Y, Fan X X, Dong H G, et al. Dissolving techniques of precious metal materials and their development[J]. Precious Metals, 2013, 34(4): 65−72. doi: 10.3969/j.issn.1004-0676.2013.04.015
|
[6] |
漆亮, 周美夫, 严再飞, 等. 改进的卡洛斯管溶样等离子体质谱法测定地质样品中低含量铂族元素及铼的含量[J]. 地球化学, 2006, 35(6): 667−674. doi: 10.19700/j.0379-1726.2006.06.013
Qi L, Zhou M F, Yan Z F, et al. An improved carius tube technique for digesting geological samples in the determination of PGEs and Re by ICP-MS[J]. Geochimica, 2006, 35(6): 667−674. doi: 10.19700/j.0379-1726.2006.06.013
|
[7] |
赵正, 漆亮, 黄智龙, 等. 地质样品中铂族元素的分析测定方法[J]. 地学前缘, 2009, 16(1): 181−193. doi: 10.3321/j.issn:1005-2321.2009.01.021
Zhao Z, Qi L, Huang Z L, et al. The analytical methods for determination of platinum group elements in geological samples[J]. Earth Science Frontiers, 2009, 16(1): 181−193. doi: 10.3321/j.issn:1005-2321.2009.01.021
|
[8] |
毋喆, 胡家祯, 高志军, 等. 镍锍试金-电感耦合等离子体质谱法测定铜精矿中6种铂族元素的含量[J]. 理化检验(化学分册), 2024, 60(7): 725−730. doi: 10.11973/lhjy-hx230321
Wu Z, Hu J Z, Gao Z J, et al. Determination of 6 platinum group elements in copper concentrate by inductively coupled plasma mass spectrometry with nickel sulphide fire assay[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2024, 60(7): 725−730. doi: 10.11973/lhjy-hx230321
|
[9] |
刘芳美, 甘聪, 廖彬玲, 等. 锍镍试金富集-电感耦合等离子体质谱法测定铜阳极泥中微量元素铱铑[J]. 岩矿测试, 2023, 42(2): 298−306. doi: 10.15898/j.cnki.11-2131/td.202205160102
Liu F M, Gan C, Liao B L, et al. Determination of iridium and rhodium in copper anode slime by inductively coupled plasma-mass spectrometry with nickel sulphide fire assay[J]. Rock and Mineral Analysis, 2023, 42(2): 298−306. doi: 10.15898/j.cnki.11-2131/td.202205160102
|
[10] |
郭家凡, 来新泽, 王琳, 等. 火试金反应原理及熔渣影响因素探究[J]. 冶金分析, 2022, 42(12): 1−11. doi: 10.13228/j.boyuan.issn1000-7571.011985
Guo J F, Lai X Z, Wang L, et al. Discussion on the slag of fire assay[J]. Metallurgical Analysis, 2022, 42(12): 1−11. doi: 10.13228/j.boyuan.issn1000-7571.011985
|
[11] |
王君玉, 毋喆, 胡家贞, 等. 黑色岩系样品中铂族元素的分析方法[J]. 黄金, 2011, 32(7): 62−64. doi: 10.3969/j.issn.1001-1277.2011.07.015
Wang J Y, Wu Z, Hu J Z, et al. Analysis method of platinum group elements in black rock samples[J]. Gold, 2011, 32(7): 62−64. doi: 10.3969/j.issn.1001-1277.2011.07.015
|
[12] |
于亚辉, 王琳, 王明军, 等. 电感耦合等离子体质谱法测定地球化学样品中痕量铑的干扰消除方法探讨[J]. 冶金分析, 2017, 37(9): 25−32. doi: 10.13228/j.boyuan.issn1000-7571.010151
Yu Y H, Wang L, Wang M J, et al. Discussion on elimination of interference in determination of trace rhodium in geochemical sample by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2017, 37(9): 25−32. doi: 10.13228/j.boyuan.issn1000-7571.010151
|
[13] |
倪文山, 孟亚兰, 姚明星, 等. 铅试金富集-塞曼石墨炉原子吸收光谱法测定矿石样品中的铂钯铑铱[J]. 冶金分析, 2010, 30(3): 23−26. doi: 10.13228/j.issn.1000-7571.2010.03.016
Ni W S, Meng Y L, Yao M X, et al. Determination of platinum, palladium, rhodium and iridium in ore samples by lead assay-Pieter Zeeman graphite furnace atomic absorption spectroscopy[J]. Metallurgical Analysis, 2010, 30(3): 23−26. doi: 10.13228/j.issn.1000-7571.2010.03.016
|
[14] |
李可及, 刘淑君, 邵坤. 铋锑试金测定硫化铜镍矿中钌铑钯铱铂[J]. 分析化学, 2014, 42(6): 909−912. doi: 10.3724/SP.J.1096.2014.31193
Li K J, Liu S J, Shao K. Determination of ruthenium, rhodium, palladium, iridium and platinum in copper-nickel sulfide ores by bismuth-antimony fire-assay[J]. Chinese Journal of Analytical Chemistry, 2014, 42(6): 909−912. doi: 10.3724/SP.J.1096.2014.31193
|
[15] |
王君玉, 孙自军, 袁润蕾, 等. 锡试金富集-电感耦合等离子体质谱法测定黑色页岩中的铂族元素[J]. 理化检验(化学分册), 2013, 49(8): 972−978.
Wang J Y, Sun Z J, Yuan R L, et al. ICP-MS determination of platinum metals in black shale enriched by tin fire assay[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2013, 49(8): 972−978.
|
[16] |
吕彩芬, 何红蓼, 周肇茹, 等. 锍镍试金-等离子体质谱法测定地球化学勘探样品中的铂族元素和金 Ⅱ. 分析流程空白的降低[J]. 岩矿测试, 2002, 21(1): 7−11. doi: 10.3969/j.issn.0254-5357.2002.01.002
Lyu C F, He H L, Zhou Z R, et al. Determination of the platinum group elements and gold in geochemical exploration samples by nickel sulphide fire assay-ICP-MS Ⅱ. Reduction of reagent blank[J]. Rock and Mineral Analysis, 2002, 21(1): 7−11. doi: 10.3969/j.issn.0254-5357.2002.01.002
|
[17] |
毛香菊, 肖芳, 刘璐, 等. 锍镍试金-高分辨率连续光源石墨炉原子吸收光谱法测定铬铁矿中铂族元素[J]. 冶金分析, 2020, 40(7): 40−46. doi: 10.13228/j.boyuan.issn1000-7571.011021
Mao X J, Xiao F, Liu L, et al. Determination of platinum group elements in chromite by nickel sulfide fire assay-high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2020, 40(7): 40−46. doi: 10.13228/j.boyuan.issn1000-7571.011021
|
[18] |
Ni W S, Mao X J, Zhang H L. Determination of ultratrace platinum, palladium, ruthenium, rhodium, and iridium in rocks and minerals by inductively coupled-plasma mass spectrometry following nickel sulfide fire assay preconcentration and open mixed acid digestion[J]. Analytical Letters, 2019, 52(11): 1699−1710. doi: 10.1080/00032719.2019.1566348
|
[19] |
高颂, 张艳, 庞晓辉, 等. 高分辨电感耦合等离子体质谱法测定高纯镍中25种痕量元素[J]. 冶金分析, 2021, 41(6): 35−43. doi: 10.13228/j.boyuan.issn1000-7571.011262
Gao S, Zhang Y, Pang X H, et al. Determination of 25 trace elements in high purity nickel by high resolution inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2021, 41(6): 35−43. doi: 10.13228/j.boyuan.issn1000-7571.011262
|
[20] |
杨国武, 侯艳霞, 刘庆斌, 等. 萃取分离-电感耦合等离子体质谱法测定高温合金中痕量镉[J]. 冶金分析, 2019, 39(4): 1−6. doi: 10.13228/j.boyuan.issn1000-7571.010600
Yang G W, Hou Y X, Liu Q B, et al. Determination of trace cadmium in superalloys by extraction separation inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(4): 1−6. doi: 10.13228/j.boyuan.issn1000-7571.010600
|
[21] |
张馨元, 胡净宇, 侯艳霞, 等. 碰撞反应池-电感耦合等离子体质谱法测定镍基高温合金中痕量铜锌钡[J]. 冶金分析, 2022, 42(5): 15−20. doi: 10.13228/j.boyuan.issn1000-7571.011643
Zhang X Y, Hu J Y, Hou Y X, et al. Determination of trace copper, zinc and barium in nickel-based superalloy by inductively coupled plasma mass spectrometry with collision reaction cell[J]. Metallurgical Analysis, 2022, 42(5): 15−20. doi: 10.13228/j.boyuan.issn1000-7571.011643
|