Citation: | WANG Lixin,GAO Qingsong,ZHOU Jialin,et al. The Impact of Different Clay Mineral Types on the Irreducible Water Saturation in Tight Sandstone Reservoirs: A Case Study of the Lower Shihezi Formation in Hangjinqi Area, Ordos Basin[J]. Rock and Mineral Analysis,2024,43(6):821−835. DOI: 10.15898/j.ykcs.202407150157 |
The type and content of clay minerals in tight sandstone reservoirs of the He-1 member in the Jin-30 well area of Hangjinqi in the northern margin of the Ordos Basin have a significant effect on irreducible water saturation. On the basis of core observation, the petrological characteristics, clay mineral types and occurrence forms, pore structure and irreducible water distribution of the target layer by means of X-ray diffraction analysis, high-resolution scanning electron microscopy, casting thin section analysis, one-dimensional nuclear magnetic resonance experiment and high-pressure mercury injection experiment were studied. The results show that: (1) The average content of clay minerals in the reservoir is 18.36%, and the clay minerals mainly include kaolinite, illite, chlorite and illite/smectite mixed layers. (2) There are differences in the types of clay minerals in different lithofacies: the clay minerals in lithic quartz sandstone are mainly feldspar altered kaolinite, and feldspar intragranular dissolution pores, and kaolinite intergranular pores are developed. The lithic sandstone is mainly composed of lithic and matrix altered illite, and the intragranular dissolution pores filled with illite are developed. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202407150157.
Significance:The irreducible water in the reservoir is mainly attached to the surface of clay minerals in the form of film or developed in tiny pores. The evaluation of its distribution characteristics is of great significance to the study of tight sandstone gas content. At present, due to the lack of analysis of pore structure differences under the action of clay minerals, the fine evaluation of reservoir gas content is seriously restricted. The tight sandstone reservoir of He-1 member of the lower Shihezi Formation in Hangjinqi area is taken as the research object[4]. A variety of test methods are used to study the types and output characteristics of clay minerals in the tight sandstone reservoir of the target layer and the difference characteristics of pore structure of different lithofacies, so as to further clarify the relationship between the output difference of different types of clay minerals and irreducible water saturation.
Methods:A total of 143 samples were collected from 15 wells in the first member of the lower Shihezi Formation in the Jin-30 well area of Hangjinqi, Ordos Basin. First, all the samples were tested by X-ray diffraction and high-resolution scanning electron microscopy. Representative samples were selected for casting thin section identification, nuclear magnetic resonance test and high-pressure mercury injection test. All tests are carried out in strict accordance with the latest industry standards, and some samples are tested repeatedly to ensure the accuracy of the test results.
Data and Results:According to the characteristics of core particle size, mineral composition, content and sedimentary structure, the tight sandstone reservoir of the He-1 member in Jin-30 well area is divided into four lithofacies: gravel coarse-grained lithic quartz sandstone, coarse-medium grained lithic quartz sandstone, gravel coarse-grained lithic sandstone and coarse-medium grained lithic sandstone. The clay minerals in lithic quartz sandstone are mainly feldspar altered kaolinite, and feldspar intragranular dissolution pores, and kaolinite intergranular pores are developed. The lithic sandstone is mainly composed of lithic and matrix altered illite, and the intragranular dissolution pores filled with illite are developed. The reservoir space mainly develops four types of pores, including kaolinite intercrystalline pores, feldspar intragranular dissolved pores, debris dissolved pores and matrix micropores, and microfractures are developed. The intragranular dissolved pores of feldspar and intercrystalline pores of kaolinite are mainly developed in the gravel-bearing coarse-grained lithic quartz sandstone, and the proportion of surface pores is 41% and 24%, respectively. Kaolinite intergranular pores, lithic dissolution feldspar intragranular dissolved pores and mold pores are mainly developed in medium-coarse lithic quartz sandstone, and the surface porosity accounts for 25%, 21% and 27%, respectively. The pore types in gravel-bearing coarse-grained lithic sandstone and medium-coarse-grained lithic sandstone are mainly intragranular dissolution pores and kaolinite intergranular pores, and the surface porosity accounts for 35% and 25%, respectively.
The saturation of movable water and irreducible water in different samples can be determined by saturation and centrifugation tests. The size of irreducible water saturation is: gravel-bearing coarse-grained lithic quartz sandstone<coarse-medium-grained lithic quartz sandstone and coarse and medium-grained lithic sandstone<gravel-bearing coarse-grained lithic sandstone. With the decrease of pore radius, the proportion of irreducible water in pores gradually increases, and the irreducible water saturation increases. The correlation analysis of clay mineral content and irreducible water saturation of 21 samples in the study area shows that the irreducible water saturation increases gradually with the increase of clay mineral content. Kaolinite and illite have obvious influence on pore throat structure[16]. The pore throat is blocked by the filamentous development of illite, which is the dominant factor affecting the distribution of irreducible water saturation. The kaolinite monomer formed by feldspar kaolinization is disorderly and loose, and the corresponding intergranular pores of clay minerals are not developed, but the feldspar dissolution pores are more developed, and the pore connectivity is better[35]. The authigenic kaolinite is distributed in worm-like or book-like aggregates to support each other to form a large number of micro-nano pores, causing an increase in irreducible water saturation.
[1] |
曾溅辉, 张亚雄, 张在振, 等. 致密砂岩气藏复杂气-水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067−1083. doi: 10.11743/ogg20230501
Zeng J H, Zhang Y X, Zhang Z Z, et al. Complex gas-water contacts in tight sandstone gas reservoirs: Distribution pattern and dominant factors controlling their formation and distribution[J]. Oil & Gas Geology, 2023, 44(5): 1067−1083. doi: 10.11743/ogg20230501
|
[2] |
崔耀科. 分流河道砂体精细刻画与储层非均质性研究[D]. 西安: 西安石油大学, 2023.
Cui Y K. Study on fine characterization of distributary channel sand body and reservoir heterogeneity: A case study from Chang 2 reservoir of Qiaozhen area in Xiasiwan oil field [D]. Xi’an: Xi’an Shiyou University, 2023.
|
[3] |
王静怡. 鄂尔多斯盆地本溪组致密砂岩储层成岩演化与成藏耦合机理研究[D]. 北京: 中国石油大学(北京), 2023.
Wang J Y. Study on coupling mechanism of diagenesis and accumulation of tight sandstone in the Benxi Formation, Ordos Basin[D]. Beijing: China University of Petroleum (Beijing), 2023.
|
[4] |
邱隆伟, 穆相骥, 李浩, 等. 杭锦旗地区下石盒子组致密砂岩储层成岩作用对孔隙发育的影响[J]. 油气地质与采收率, 2019, 26(2): 42−50. doi: 10.13673/j.cnki.cn37-1359/te.2019.02.006
Qiu L W, Mu X J, Li H, et al. Influence of diagenesis of tight sandstone reservoir on the porosity development of lower Shihezi Formation in Hangjinqi area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2): 42−50. doi: 10.13673/j.cnki.cn37-1359/te.2019.02.006
|
[5] |
聂海宽, 张金川, 薛会, 等. 杭锦旗探区储层致密化与天然气成藏的关系[J]. 西安石油大学学报(自然科学版), 2009, 24(1): 1−7, 108.
Nie H K, Zhang J C, Xue H, et al. Relationship between the densification of reservoir and the accumulation of natural gas in Hangjinqi area of Ordos Baisn[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2009, 24(1): 1−7, 108.
|
[6] |
刘飞, 周文, 李秀华, 等. 鄂尔多斯盆地杭锦旗地区上古生界砂岩中储层粘土矿物特征分析[J]. 矿物岩石, 2006(1): 92−97. doi: 10.19719/j.cnki.1001-6872.2006.01.017
Liu F, Zhou W, Li X H, et al. Analysis of characteritics of the clay minerals in the upper palaeozoic sandstone reservoir of Hangjinqi area in North Ordos Basin[J]. Mineralogy and Petrology, 2006(1): 92−97. doi: 10.19719/j.cnki.1001-6872.2006.01.017
|
[7] |
郭笑锴, 滕飞启, 吴明松, 等. 鄂尔多斯盆地陇东地区铝土岩储层含气性测井评价方法及其应用[J]. 天然气地球科学, 2024, 35(8): 1454−1466. doi: 10.11764/j.issn.1672-1926.2024.04.022
Guo X K, Teng F Q, Wu S M, et al. Logging evaluation method for gas bearing properties of bauxite reservoirs in the Longdong area of Ordos Basin and its application[J]. Natural Gas Geoscience, 2024, 35(8): 1454−1466. doi: 10.11764/j.issn.1672-1926.2024.04.022
|
[8] |
郭明强, 周龙刚, 张兵, 等. 致密砂岩气水分布特征——以鄂尔多斯盆地东部临兴地区为例[J]. 天然气地球科学, 2020, 31(6): 855−864.
Guo M Q, Zhou L G, Zhang B, et al. The regularity of gas and water distribution for tight sandstone: Case study of Linxing area, Eastern Ordos Basin[J]. Natural Gas Geoscience, 2020, 31(6): 855−864.
|
[9] |
李港, 张占松, 郭建宏, 等. 基于核磁共振测井的束缚水饱和度评价方法: 以中东地区M层组的孔隙型碳酸盐岩储层为例[J]. 科学技术与工程, 2023, 23(30): 12900−12910. doi: 10.12404/j.issn.1671-1815.2023.23.30.12900
Li G, Zhang Z S, Guo J H, et al. Evaluation method of irreducible water saturation based on nuclear magnetic resonance logging: Taking the porous carbonate reservoir of M Formation in the middle east as an example[J]. Science Technology and Engineering, 2023, 23(30): 12900−12910. doi: 10.12404/j.issn.1671-1815.2023.23.30.12900
|
[10] |
白玉湖, 王苏冉, 徐兵祥, 等. 致密砂岩束缚水饱和度和微观孔喉结构关系实验研究[J]. 中国海上油气, 2022, 34(4): 65−71. doi: 10.11935/j.issn.1673-1506.2022.04.006
Bai Y H, Wang S R, Xu B X, et al. Experimental study on the relationship between irreducible water saturation and micro pore throat in tight sandtone[J]. China Offshore Oil and Gas, 2022, 34(4): 65−71. doi: 10.11935/j.issn.1673-1506.2022.04.006
|
[11] |
苏玉亮, 李东升, 李蕾, 等. 致密砂岩气藏地层水可动性及其影响因素研究[J]. 特种油气藏, 2020, 27(4): 118−122. doi: 10.3969/j.issn.1006-6535.2020.04.018
Su Y L, Li D S, Li L, et al. Formation water mobility and influencing factors in tight sandstone gas reservoir[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 118−122. doi: 10.3969/j.issn.1006-6535.2020.04.018
|
[12] |
陈鑫, 马立涛, 史长林, 等. 临兴区块致密砂岩储层水赋存状态及气层含水程度识别方法[J]. 地质与勘探, 2022, 58(6): 1331−1340.
Chen X, Ma L T, Shi C L, et al. Water occurrence and identification method of the water-bearing degree of tight sandstone reservoirs in the Linxing block[J]. Geology and Exploration, 2022, 58(6): 1331−1340.
|
[13] |
胡向阳, 张广权, 魏修平, 等. 杭锦旗地区南部气水识别及复杂气水关系成因[J]. 东北石油大学学报, 2019, 43(2): 41−48, 7−8. doi: 10.3969/j.issn.2095-4107.2019.02.005
Hu X Y, Zhang G Q, Wei X P, et al. Identification of gas-water reservoir and geneses of complicated gas-water relationships in southern region of Hangjinqi area[J]. Journal of Northeast Petroleum University, 2019, 43(2): 41−48, 7−8. doi: 10.3969/j.issn.2095-4107.2019.02.005
|
[14] |
薛会, 王毅, 徐波. 鄂尔多斯盆地杭锦旗探区上古生界天然气成藏机理[J]. 石油实验地质, 2009, 31(6): 551−556, 562. doi: 10.3969/j.issn.1001-6112.2009.06.002
Xue H, Wang Y, Xu B, et al. Accumulation mechanism of natural gas in Upper Paleozoic, Hangjinqi block, North Ordos Basin[J]. Petroleum Geology & Experiment, 2009, 31(6): 551−556, 562. doi: 10.3969/j.issn.1001-6112.2009.06.002
|
[15] |
杨晋东, 于振锋, 郭旭, 等. 鄂尔多斯盆地东缘晚古生代泥岩地球化学特征及有机质富集机理[J]. 岩矿测试, 2023, 42(6): 1104−1119. doi: 10.15898/j.ykcs.202306060075
Yang J D, Yu Z F, Guo X, et al. Geochemical characteristics and organic matter enrichment mechanism in Late Paleozoic mudstone, eastern margin of Ordos Basin[J]. Rock and Mineral Analysis, 2023, 42(6): 1104−1119. doi: 10.15898/j.ykcs.202306060075
|
[16] |
覃硕, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒一段致密砂岩储层特征及其主控因素[J]. 地球科学, 2022, 47(5): 1604−1618. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205006
Qin S, Shi W Z, Wang R, et al. Characteristics of tight sandstone reservoirs and their controlling factors of He-1 Member in Hangjinqi block, Ordos Basin[J]. Earth Science, 2022, 47(5): 1604−1618. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205006
|
[17] |
王涛, 侯明才, 陈洪德, 等. 海西构造旋回阴山幕式造山与鄂尔多斯盆地北部旋回充填的耦合关系[J]. 成都理工大学学报(自然科学版), 2014, 41(3): 310−317.
Wang T, Hou M C, Chen H D, et al. Coupling relationship between Yinshan episodic orogenic movement of Hercynian tectonic cycle and filling cycle of the North Ordos Basin in China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(3): 310−317.
|
[18] |
赵红坤, 刘亚轩, 马生明, 等. 粉末压片-X射线荧光光谱法测定小样品量土壤和沉积物中主量元素[J/OL]. 岩矿测试(2024-09-25)[2024-11-01]. https://doi.org/10.15898/j.ykcs.202403040030.
Zhao H K, Liu Y X, Ma S M, et al. Determination of major elements in small-weight soil and sediment samples by X-ray fluorescence spectroscopy with pressed-powder pellets[J/OL]. Rock and Mineral Analysisl(2024-09-25)[2024-11-01]. https://doi.org/10.15898/j.ykcs.202403040030.
|
[19] |
侯明才, 邓敏, 冯琳, 等. 珠江口盆地流花油田新近系碳酸盐岩白垩状结构化成因机理探讨[J]. 岩石学报, 2014, 30(3): 768−778.
Hou M C, Deng M, Feng L, et al. Genesis of calcification in Neogene carbonate rocks of Liuhua oilfield, Pearl River Mouth Basin[J]. Acta Petrologica Sinica, 2014, 30(3): 768−778.
|
[20] |
司马立强, 马骏, 刘俊丰, 等. 柴达木盆地涩北地区第四系泥岩型生物气储层孔隙有效性评价[J]. 岩性油气藏, 2023, 35(2): 1−10. doi: 10.12108/yxyqc.20230201
Sima L Q, Ma J, Liu J F, et al. Evaluation of pore effectiveness of Quaternary mudstone biogas reservoirs in Sebei area, Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(2): 1−10. doi: 10.12108/yxyqc.20230201
|
[21] |
张文凯, 施泽进, 田亚铭, 等. 联合高压压汞和恒速压汞实验表征致密砂岩孔喉特征[J]. 断块油气田, 2021, 28(1): 14−20, 32.
Zhang W K, Shi Z J, Tian Y M, et al. The combination of high-pressure mercury injection and rate-controlled mercury injection to characterize the pore-throat structure in tight sandstone reservoirs[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 14−20, 32.
|
[22] |
刘士靖. 松辽盆地页岩油成藏条件研究及甜点评价[D]. 西安: 西安石油大学, 2022.
Liu S J. The study on shale oil accumulation conditions and dessert evaluation in the Songliao Basin [D]. Xi’an: Xi’an Shiyou University, 2022.
|
[23] |
于振锋. 海—塔盆地火山碎屑岩复杂岩性的岩石学机理及其测井响应[D]. 长春: 吉林大学, 2013.
Yu Z F. Petrologic mechanism and logging response of complex lithology of volcaniclastic rock in Hailaer—Tamtsag Basin[D]. Changchun: Jilin University, 2013.
|
[24] |
周志恒, 钟大康, 凡睿, 等. 致密砂岩中岩屑溶蚀及其伴生胶结对孔隙发育的影响——以川东北元坝西部须二下亚段为例[J]. 中国矿业大学学报, 2019, 48(3): 592−603, 615. doi: 10.13247/j.cnki.jcumt.000957
Zhou Z H, Zhong D K, Fan R, et al. Effect of dissolution of rock fragments and its associated cementation on pore evolution: A case study of the lower sub-member of the second member of Xujiahe Formation in the west of Yuanba area, Northeastern Sichuan Basin[J]. Journal of China University of Mining & Technology, 2019, 48(3): 592−603, 615. doi: 10.13247/j.cnki.jcumt.000957
|
[25] |
朱晴, 乔向阳, 张磊. 高压压汞在致密气藏孔喉分布表征和早期产能评价中的应用[J]. 岩矿测试, 2020, 39(3): 373−383. doi: 10.15898/j.cnki.11-2131/td.201909230138
Zhu Q, Qiao X Y, Zhang L, et al. Application of high-pressure mercury injection in pore-throat distribution characterization and early productivity evaluation of tight gas reservoirs[J]. Rock and Mineral Analysis, 2020, 39(3): 373−383. doi: 10.15898/j.cnki.11-2131/td.201909230138
|
[26] |
赵全胜. 核磁共振成像测井技术及应用[J]. 新疆石油地质, 2008(5): 650−653.
Zhao Q S. Magnetic resonance imaging logging technology and application[J]. Xinjiang Petroleum Geology, 2008(5): 650−653.
|
[27] |
侯伟, 赵天天, 张雷, 等. 基于低场核磁共振的煤储层束缚水饱和度应力响应研究与动态预测——以保德和韩城区块为例[J]. 吉林大学学报(地球科学版), 2020, 50(2): 608−616. doi: 10.13278/j.cnki.jjuese.20190252
Hou W, Zhao T T, Zhang L, et al. Stress sensitivity and prediction of irreducible water saturation in coal reservoirs in Baode and Hancheng blocks based on low-field nuclear magnetic resonance[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 608−616. doi: 10.13278/j.cnki.jjuese.20190252
|
[28] |
郑晓薇. 鄂尔多斯盆地杭锦旗地区盒1段优质储层形成机理研究[D]. 北京: 中国石油大学(北京), 2018.
Zheng X W. Formation mechanism of high-quality reservoir in box section 1 of Hangjinli area, Ordos Basin[D]. Beijing: China University of Petroleum (Beijing), 2018.
|
[29] |
Yang T, Cao Y C, Friis H, et al. Diagenesis and reservoir quality of lacustrine deep-water gravity-flow sandstones in the Eocene Shahejie Formation in the Dongying sag, Jiyang Depression, Eastern China[J]. Geoscienceworld, 2020(5): 104. doi: 10.1306/1016191619917211
|
[30] |
Najmeh J, Ali K, Mohammad B, et al. Reservoir characterization of fluvio-deltaic sandstone packages in the framework of depositional environment and diagenesis, the South Caspian Sea Basin[J]. Journal of Asian Earth Sciences, 2022(9): 224.
|
[31] |
朱林奇, 张冲, 石文睿, 等. 结合压汞实验与核磁共振测井预测束缚水饱和度方法研究[J]. 科学技术与工程, 2016, 16(15): 22−29. doi: 10.3969/j.issn.1671-1815.2016.15.004
Zhu L Q, Zhang C, Shi W R, et al. Study on the method of prediction of irreducible water saturation by combining mercury intrusion and NMR logging data[J]. Science Technology and Engineering, 2016, 16(15): 22−29. doi: 10.3969/j.issn.1671-1815.2016.15.004
|
[32] |
卢双舫, 李俊乾, 张鹏飞, 等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发, 2018, 45(3): 436−444. doi: 10.11698/PED.2018.03.08
Lu S F, Li J Q, Zhang P F, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436−444. doi: 10.11698/PED.2018.03.08
|
[33] |
张全培. 鄂尔多斯盆地姬塬地区长7致密砂岩储层微观孔喉结构与分级评价研究[D]. 西安: 西北大学, 2022.
Zhang Q P. Study on microscopic pore throat structure and grading evaluation of Chang 7 tight sandstone reservoirs in Jiyuan area, Ordos Basin[D]. Xi’an: Northwestern University, 2022.
|
[34] |
钟高润, 任媛, 郭京哲, 等. 鄂尔多斯盆地中部延长组长6段低阻油层成因机理与测井识别[J]. 地球物理学进展, 2023, 38(5): 2230−2238. doi: 10.6038/pg2023GG0543
Zhong G R, Ren Y, Guo J Z, et al. Genetic mechanism and logging identification of low resistivity oil reservoir in Chang 6 member of Yanchang Formation, Ordos Basin[J]. Progress in Geophysics, 2023, 38(5): 2230−2238. doi: 10.6038/pg2023GG0543
|
[35] |
曹桐生, 罗龙, 谭先锋, 等. 致密砂岩储层成因及其孔隙演化过程——以杭锦旗十里加汗地区下石盒子组为例[J]. 断块油气田, 2021, 28(5): 598−603.
Cao T S, Luo L, Tan X F, et al. Genesis and pore evolution of tight sandstone reservoir: Taking lower Shihezi Formation in the Shilijiahan block of Hangjinqi area as an example[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 598−603.
|