• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
MA Jiabao,LIU Siwen,WANG Bo,et al. Research Progress on the Effect of Dissolved Organic Matter on the Environmental Behavior of Cadmium in the Environmental Remediation[J]. Rock and Mineral Analysis,2025,44(3):1−14. DOI: 10.15898/j.ykcs.202406180134
Citation: MA Jiabao,LIU Siwen,WANG Bo,et al. Research Progress on the Effect of Dissolved Organic Matter on the Environmental Behavior of Cadmium in the Environmental Remediation[J]. Rock and Mineral Analysis,2025,44(3):1−14. DOI: 10.15898/j.ykcs.202406180134

Research Progress on the Effect of Dissolved Organic Matter on the Environmental Behavior of Cadmium in the Environmental Remediation

More Information
  • Received Date: June 17, 2024
  • Revised Date: January 05, 2025
  • Accepted Date: January 10, 2025
  • Available Online: January 21, 2025
  • HIGHLIGHTS
    (1) The complexation reaction is the main mechanism between DOM and Cd, and different types of DOM have two effects on Cd: passivation or activation.
    (2) Higher molecular weight DOM, higher environmental pH and temperature, and lower ionic strength are beneficial for enhancing the stability of DOM-Cd complexes, reducing the migration of Cd.
    (3) High molecular weight DOM with high humus index (HIX) combined with inorganic passivators is suitable for in-situ passivation remediation of Cd pollution, while low molecular weight DOM is suitable for Cd pollution leaching remediation and plant remediation.

    With the rapid development of the economy and society and the continuous emission of cadmium (Cd), Cd pollution has become a major environmental problem faced by China and even the world. As the most active component in organic matter, molecular weight of DOM is usually between several Da and several hundred kDa.The various active functional groups contained in DOM, such as carboxyl, hydroxyl, and phenolic groups, are ligands and migration carriers for many heavy metals in the environment. The interaction between DOM and Cd significantly affects the morphology, bioavailability, toxicity, and migration transformation of Cd in the environment through physical adsorption, ligand exchange, and surface complexation. However, from the perspective of cadmium pollution remediation, the complexation between Cd and DOM is a key factor controlling the effectiveness of Cd remediation. DOM can directly form DOM Cd binary complexes through ligand exchange. According to the different bridging positions of DOM, Cd(Ⅱ), and mineral/metal surface cations (Mi/Me), two types of ternary complexes can also be formed: A or B.DOM has complex and diverse sources, components, and structures, under different conditions, DOM exhibits two effects on Cd: passivation or activation, which has been widely used in in-situ passivation remediation, leaching remediation, or phytoremediation of Cd pollution. Based on the review of relevant research results in recent years, this article evaluates the types of complexation between Cd and DOM, and analyzes the effects of factors such as DOM molecular weight, pH, ion strength, and temperature on Cd-DOM complexation and the mechanism of Cd adsorption and desorption. On this basis, Summarize the application research of DOM in in-situ passivation remediation and ex-situ remediation of soil/sediment Cd pollution. These methods help to reduce environmental risks and remediation costs of Cd pollution remediation. Under normal circumstances, small molecular weight DOM contains richer functional groups and more complex coordination sites, making it easy to form soluble DOM-Cd complexes. Especially for DOM components with molecular weight<30kDa, which can release more Cd into the environment; Under higher pH environmental conditions, it is beneficial to enhance the stability of DOM-Cd complexes and soil adsorption of Cd, while high ionic strength has a strong inhibitory effect on Cd adsorption; In the remediation of Cd pollution, selecting larger molecular weight DOM (>30kDa) with higher humification degree and applying inorganic passivators such as iron oxides can significantly improve the in-situ passivation and remediation effect of Cd pollution; In the chemical leaching or phytoremediation of Cd, small molecular weight DOM (<5kDa) is selected to improve the effectiveness of pollution remediation. it is recommended to conduct research in the following three areas in the future: firstly, study the complexation between different molecular weights of DOM and Cd, and accurately analyze the complexation between functional groups of different components inside DOM and Cd. Secondly, strengthen the research on the adsorption, desorption, migration, transformation, and bioavailability of Cd by DOM under the influence and control of multiple factors. Finally, Strengthen the research on DOM in Cd pollution remediation technology, improve the numerical simulation model of the interaction between DOM and Cd, provide path guidance and data support for long-term observation of Cd pollution, and more accurately reveal the migration and transformation process of Cd in the environment.

  • [1]
    Han G, Wang J W. A Critical Review on the Removal and Recovery of Hazardous Cd from Cd-containing Secondary Resources in Cu-Pb-Zn Smelting Processes[J]. 2022, 12: 1846.
    [2]
    Joeri K, Marta P R, Harald B. Molecular Probing of DOM Indicates a Key Role of Spruce-derived Lignin in the DOM and Metal Cycles of a Headwater Catchment: Can Spruce Forest Dieback Exacerbate Future Trends in the Browning of Central European Surface Waters?[J]. Environmental Science & Technology, 2022, 56(4): 2747−2759. doi: 10.1021/acs.est.1c04719
    [3]
    Mu T T, Wu T, Zhou T, et al. Geographical Variation in Arsenic, Cadmium, and Lead of Soils and Rice in the Major Rice Producing Regions of China[J]. Science of the Total Environment, 2019, 677(10): 373−381. doi: 10.1007/s10661-024-12654-7
    [4]
    Xiang J, Xu P, Chen W Z, et al. Pollution Characteristics and Health Risk Assessment of Heavy Metals in Agricultural Soils over the Past Five Years in Zhejiang, Southeast China[J]. International Journal of Environmental Research and Public Health, 2022, 19(22): 14642. doi: 10.3390/ijerph192214642
    [5]
    Chen J, Li K, Hu A, et al. The Mechanisms of DOMs Derived from Biostabilized Wastewater Activated Sludge Alleviate the Adverse Effects of Cd-stress in Rice Seedlings (Oryza sativa L)[J]. Science of the Total Environment, 2022, 845: 157157. doi: 10.1016/j.scitotenv.2022.157157
    [6]
    郝港利, 邓文博, 刘文娟. 芦芽山阔叶林土壤中腐殖酸和富里酸的提取与表征研究[J]. 山西大学学报(自然科学版), 2023, 46(4): 961−968. doi: 10.13451/j.sxu.ns.2022069

    He G L, Deng W B, Liu W J, et al. Extraction and Characterization of Humic Acid and Fulvic Acid from Broad-Leaved Forest Soil in Luya Mountain[J]. Journal of Shanxi University (Natural Science Edition), 2023, 46(4): 961−968. doi: 10.13451/j.sxu.ns.2022069
    [7]
    Ni M F, Li S Y. Ultraviolet Humic-like Component Contributes to Riverine Dissolved Organic Matter Biodegradation[J]. Journal of Environmental Sciences, 2023, 124: 165−175. doi: 10.1016/j.jes.2021.10.011
    [8]
    Liu M X, Han X K, Liu C Q, et al. Differences in the Spectroscopic Characteristics of Wetland Dissolved Organic Matter Binding with Fe3+, Cu2+, Cd2+, Cr3+ and Zn2+[J]. Science of the Total Environment, 2021, 800: 149476. doi: 10.1016/j.scitotenv.2021.149476
    [9]
    Fang W, Wei Y H, Liu J G. Comparative Characterization of Sewage Sludge Compost and Soil: Heavy Metal Leaching Characteristics[J]. Journal of Hazardous Materials, 2016, 310: 1−10. doi: 10.1016/j.jhazmat.2016.02.025
    [10]
    Cowayd E K, Ohno T, Plante A F. Adsorption and Molecular Fractionation of Dissolved Organic Matter on Iron-bearing Mineral Matrices of Varying Crystallinity[J]. Environmental Science & Technology, 2018, 52(3): 1036−1044. doi: 10.1021/acs.est.7b04953
    [11]
    Markus K, Ian C B, Elizabeth K C, et al. Dynamic Interactions at the Mineral-Organic Matter Interface[J]. Nature Reviews Earth & Environment, 2021, 2: 402−421. doi: 10.1038/s43017-021-00162-y
    [12]
    Fan T T, Wang Y J, Li C B, et al. Effects of Soil Organic Matter on Sorption of Metal Ions on Soil Clay Particles[J]. Soil Science Society of America Journal, 2015, 79(3): 794−802. doi: 10.2136/sssaj2014.06.0245
    [13]
    Chen M S, Ding S M, Li C, et al. High Cadmium Pollution from Sediments in a Eutrophic Lake Caused by Dissolved Organic Matter Complexation and Reduction of Manganese Oxide[J]. Water Research, 2021, 190: 116711. doi: 10.1016/j.watres.2020.116711
    [14]
    文萍, 汤佳, 蔡茜茜, 等. 超高温堆肥腐殖酸与Cd(Ⅱ)高效络合机制2DCOS分析[J]. 光谱学与光谱分析, 2020, 40(5): 1534−1540.

    Wen P, Tang J, Cai Q Q, et al. Insight into Efficient Complexation Mechanism of Cd(Ⅱ) to Hyperthermophilic Compost-derived Humic Acids by Two Dimensional Correlation Analyses[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1534−1540.
    [15]
    梁明欣, 寇莹莹, 王京刚, 等. 不同生态混凝土坡岸中溶解性有机质与镉的相互作用机理研究[J]. 环境科学研究, 2020, 33(8): 1857−1868. doi: 10.13198/J.issn.1001-2969.2020.02.10

    Liang M X, Kou Y Y, Wang J G, et al. Interaction Mechanism of Dissolved Organic Matter and Cadmium in Different Ecological Concrete Slopes[J]. Research of Environmental Sciences, 2020, 33(8): 1857−1868. doi: 10.13198/J.issn.1001-2969.2020.02.10
    [16]
    吴江彤, 曾安容, 李清兰, 等. 重金属-柠檬酸-针铁矿三元体系的表面络合模型研究[J]. 环境化学, 2021, 40(2): 520−530. doi: 10.7524/j.issn.0254-6108.2020053102

    Wu J T, Zeng A R, Li Q L, et al. Development of Surface Complexation Model of Heavy Metal-Citricacid-Ggoethiteternary System[J]. Environmental Chemistry, 2021, 40(2): 520−530. doi: 10.7524/j.issn.0254-6108.2020053102
    [17]
    金晓丹, 何俊贺, 黄宇钊, 等. 麦饭石在修复水体和土壤中重金属污染方面的研究[J]. 环境科技, 2021, 34(4): 23−28. doi: 10.19824/j.cnki.cn32-1786/x.2021.0052

    Jin X D, He J H, Huang Y Z, et al. The Study on Immobilization of Heavy Metal Contaminated Water and Soils by Manfan Stone[J]. Environmental Science and Technology, 2021, 34(4): 23−28. doi: 10.19824/j.cnki.cn32-1786/x.2021.0052
    [18]
    Xu Z B, Tsang D C W. Mineral-mediated Stability of Organic Carbon in Soil and Relevant Interaction Mechanisms[J]. Eco-Environment & Health, 2024, 3(1): 59−76. doi: 10.1016/j.eehl.2023.12.003
    [19]
    Zhang Y C, Liu X D, Zhang C, et al. A Combined First Principles and Classical Molecular Dynamics Study of Clay-Soil Organic Matters (SOMs) Interactions[J]. Geochimica et Cosmochimica Acta, 2020, 291(15): 110−125. doi: 10.1016/j.gca.2019.12.022
    [20]
    Qu C C, Chen W L, Hua X P, et al. Heavy Metal Behaviour at Mineral-Organo Interfaces: Mechanisms, Modelling and Influence Factors[J]. Environment International, 2019, 131: 1−15. doi: 10.1016/j.envint.2019.104995
    [21]
    Qu C, Chen J, Mortimer M, et al. Humic Acids Restrict the Transformation and the Stabilization of Cd by Iron(hydr) Oxides[J]. Science of the Total Environment, 2022, 430: 128365. doi: 10.1016/j.jhazmat.2022.128365
    [22]
    Wen J J, Li Z W, Jin C S, et al. Fe Oxides and Fulvic Acids Together Promoted the Migration of Cd(Ⅱ) to the Root Surface of Phragmites Australis[J]. Journal of Hazardous Materials, 2022, 425(5): 1−11. doi: 10.1016/j.jhazmat.2021.127998
    [23]
    Martinez C E, Mcbride M B. Dissolved and Labile Concentrations of Cd, Cu, Pb and Zn in Aged Ferrihydrite-Organic Matter Systems[J]. Environmental Science and Technology, 1999, 33(5): 745−750. doi: 10.1021/es980576c
    [24]
    易层, 严玉鹏, 王小明, 等. 天然有机质和金属离子在矿物表面的共吸附[J]. 农业环境科学学报, 2018, 37(8): 1574−1583. doi: 10.11654/jaes.2018-0307

    Yi C, Yan Y P, Wang X M, et a. Co-sorption of Natural Organic Matter and Metal Ions on Minerals[J]. Journal of Agro-Environment Science, 2018, 37(8): 1574−1583. doi: 10.11654/jaes.2018-0307
    [25]
    王萌, 雷丽萍, 方敦煌, 等. 巯基修饰和胡敏酸包裹纳米Fe3O4颗粒的制备及其对溶液中Pb2+Cd2+Cu2+的吸附效果研究[J]. 农业环境科学学报, 2011, 30(8): 1669−1674.

    Wang M, Lei L P, Fang D H, et al. Adsorption Studies on Aqueous Cd2+, Pb2+, Cu2+ Ions by Thiol and Humic Acid Functionalized Fe3O4 Nanoparticles[J]. Journal of Agro-Environment Science, 2011, 30(8): 1669−1674.
    [26]
    王慧, 唐杉, 韩上, 等. 磷对镉离子在针铁矿及针铁矿-胡敏酸复合体表面吸附的影响[J]. 生态与农村环境学报, 2019, 35(5): 659−667. doi: 10.19741/j.issn.1673-4831.2018.0372

    Wang H, Tang S, Han S, et al. The Cadmium Adsorption on Goethite and Humic Acid Coated Goethite Complexes Under Phosphate Application[J]. Journal of Ecology and Rural Environment, 2019, 35(5): 659−667. doi: 10.19741/j.issn.1673-4831.2018.0372
    [27]
    Silvia O, María D L, Estela M A. Binding of Pb(Ⅱ) in the System Humic Acid/Goethite at Acidic pH[J]. Chemosphere, 2006, 65(11): 2313−2321. doi: 10.1016/j.Chemosphere.2006.05.009
    [28]
    唐一夫, 曹长春, 吕鹏. 羟基氧化铁对镉-腐殖酸的吸附研究[J]. 无机盐工业, 2023, 55(8): 124−131. doi: 10.19964/j.issn.1006-4990.2022-0643

    Tang Y F, Cao C C, Lyu P. Study on Adsorption of Cadmium-Humic Acid by Hydroxyiron Oxide[J]. Inorganic Chemicals Industry, 2023, 55(8): 124−131. doi: 10.19964/j.issn.1006-4990.2022-0643
    [29]
    牟海燕, 黄武, 万娟, 等. 不同分子量胡敏酸对蒙脱石吸附镉的影响及作用机制[J]. 工程科学与技术, 2021, 53(5): 207−213. doi: 10.15961/j.jsuese.202001016

    Mu H Y, Huang W, Wan J, et al. Effect and Mechanism of Humic Acid with Different Molecular Weight on Adsorption of Cadmium on Montmorillonite[J]. Advanced Engineering Sciences, 2021, 53(5): 207−213. doi: 10.15961/j.jsuese.202001016
    [30]
    Bu H L, Lei Q K, Tong H, et al. Humic Acid Controls Cadmium Stabilization During Fe(Ⅱ)-Induced Lepidocrocite Transformation[J]. Science of the Total Environment, 2023, 861(25): 1−11. doi: 10.1016/j.scitotenv.2022.160624
    [31]
    Hizal J, Apak R, Hoell W H. Modeling Competitive Adsorption of Copper(Ⅱ), Lead(Ⅱ), and Cadmium(Ⅱ) by Kaolinite-Based Clay Mineral/Humic Acid System[J]. Environmental Progress and Sustainable Energy, 2009, 28(4): 493−506. doi: 10.1002/ep.10331
    [32]
    Li Z L, Gong Y Y, Zhao D Y, et al. Enhanced Removal of Zinc and Cadmium from Water Using Carboxymethyl Cellulose-Bridged Chlorapatite Nanoparticles[J]. Chemosphere, 2021, 263(1): 1−11. doi: 10.1016/j.chemosphere.2020.128038
    [33]
    Zhou W J, Ren L W, Zhu L Z. Reducement of Cadmium Adsorption on Clay Minerals by the Presence of Dissolved Organic Matter from Animal Manure[J]. Environmental Pollution, 2017, 223(16): 247−254. doi: 10.1016/j.envpol.2017.01.019
    [34]
    Du H H, Huang Q Y, Lei M, et al. Sorption of Pb(Ⅱ) by Nanosized Ferrihydrite Organo-Mineral Composites Formed by Adsorption Versus Coprecipitation (Article)[J]. ACS Earth and Space Chemistry, 2018, 2(6): 556−564. doi: 10.1021/acsearthspacechem.8b00005
    [35]
    Vermeer A W P, McCulloch J K, Riemsdijk W H, et al. Metal Ion Adsorption to Complexes of Humic Acid and Metal Oxides: Deviations from the Additivity Rule[J]. Environmental Science & Technology, 1999, 33(21): 3892−3897. doi: 10.1021/es990260k
    [36]
    Du H, Qu C, Liu J. Molecular Investigation on the Binding of Cd(Ⅱ) by the Binary Mixtures of Montmorillonite with Two Bacterial Species[J]. Environmental Pollution, 2019, 229: 871-878.
    [37]
    Zhang X Y, Su C, Liu X Y, et al. Periodical Changes of Dissolved Organic Matter (DOM) Properties Induced by Biochar Application and Its Impact on Downward Migration of Heavy Metals Under Flood Conditions[J]. Journal of Cleaner Production, 2020, 275(1): 1−8. doi: 10.1016/j.jclepro.2020.123787
    [38]
    Borrok D, Aumend K, Fein J B. Significance of Ternary Bacteria-Metal-Natural Organic Matter Complexes Determined Through Experimentation and Chemical Equilibrium Modeling[J]. Chemical Geology, 2008, 238(1): 44−62. doi: 10.1016/j.chemgeo.2006.10.013
    [39]
    Bai H C, Jiang Z M, He M J, et al. Relating Cd2+ Binding by Humic Acids to Molecular Weight: A Modeling and Spectroscopic Study[J]. Journal of Environmental Sciences, 2018, 70(8): 154−165. doi: 10.13451/j.sxu.ns.2022069
    [40]
    于振亚, 杜晓丽, 高参, 等. 道路雨水径流溶解性有机物与重金属结合作用分析[J]. 环境科学学报, 2018, 38(8): 3004−3011.

    Yu Z Y, Du X L, Gao C, et al. Complexation Between Heavy Metals and Dissolved Organic Matters in Road Stormwater Runoffs[J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3004−3011.
    [41]
    姚文斌. 不同分子量有机酸与镉的络合作用及对土壤中镉固持/释放的影响机制[D]. 长沙: 中南大学, 2023: 1−61.

    Yao W B. The Complexation of Different Molecular Weight Organic Acids with Cadmium and Their Impact Mechanism on Cadmium Sequestration/Release in Soil[D]. Changsha: Central South University, 2023: 1−61.
    [42]
    Ni L, Su L, Wang P, et al. The Characterization of Dissolved Organic Matter Extracted from Different Sources and Their Influence on Cadmium Uptake by Microcystis Aeruginosa[J]. Environmental Toxicology & Chemistry, 2017, 36(7): 1856−1863. doi: 10.1002/etc.3728
    [43]
    Zhang X Q, Li Y, Ye J, et al. The Spectral Characteristics and Cadmium Complexation of Soil Dissolved Organic Matter in a Wide Range of Forest Lands[J]. Environmental Pollution, 2022, 299: 118834. doi: 10.1016/j.envpol.2022.118834
    [44]
    Liang Y, Hou M B, Zhang W, et al. Effects of Colloidal and Dissolved Organic Matters on Cd Adsorption in Soil[J]. Journal of Agro-Environment Science, 2023, 42(6): 1285−1293. doi: 10.11654/jaes.2022-1238
    [45]
    薛向东, 杨宸豪, 于荐麟, 等. 圩区河道底泥腐殖酸对重金属和抗生素的共吸附[J]. 环境科学, 2021, 42(6): 2856−2867. doi: 10.13227/j.hjkx.202010152

    Xue X D, Yang C H, Yu J L, et al. Coadsorption of Heavy Metal and Antibiotic onto Humic Acid from Polder River Sediment[J]. Environmental Science, 2021, 42(6): 2856−2867. doi: 10.13227/j.hjkx.202010152
    [46]
    吴洪燕, 李清君, 陈士更, 等. 不同分子量腐植酸的结构特征及其对土壤镉有效性的影响[J]. 土壤, 2022, 54(6): 1233−1239. doi: 10.13758/j.cnki.tr.2022.06.018

    Wu H Y, Li Q J, Chen S G, et al. Structural Characteristics of Humic Acids with Different Molecular Weights and Their Effect on Cadmium Availability in Soil[J]. Soils, 2022, 54(6): 1233−1239 . doi: 10.13758/j.cnki.tr.2022.06.018
    [47]
    Zhang X Q, Li Y, Ye J, et al. The Spectral Characteristics and Cadmium Complexation of Soil Dissolved Organic Matter in a Wide Range of Forest Lands[J]. Environmental Pollution, 2022, 299: 118834. doi: 10.1016/j.envpol.2022.118834
    [48]
    Kozyatnyk I, Bounchet S, Bjorn E, et al. Fractionation and Size-Distribution of Metal and Metalloid Contaminants in a Polluted Groundwater Rich in Dissolved Organic Matter[J]. Journal of Hazardous Materials, 2016, 318: 194−202. doi: 10.1016/j.jhazmat.2016.07.024
    [49]
    Xie J, Dong A Q, Liu J, et al. Relevance of Dissolved Organic Matter Generated from Green Manuring of Chinese Milk Vetch in Relation to Water-Soluble Cadmium[J]. Environmental Science & Pollution Research, 2019, 26(16): 16409−16421. doi: 10.1007/s11356-019-05114-0
    [50]
    Wang Z, Han R X, Muhammad A, et al. Correlative Distribution of DOM and Heavy Metals in the Soils of the Zhangxi Watershed in Ningbo City, East of China[J]. Environmental Pollution, 2022, 299: 118811. doi: 10.1016/j.envpol.2022.118811
    [51]
    胡斌, 王沛芳, 张楠楠, 等. 基于光谱特征的pH对溶解态有机质与铜相互作用的影响研究[J]. 光谱学与光谱分析, 2023, 43(5): 1628−1635. doi: 10.3964/j.issn.1000-0593(2023)-05-1628-08

    Hu B, Wang P F, Zhang N N, et al. Effect of pH on Interaction Between Dissolved Organic Matter and Copper: Based on Spectral Features[J]. Spectroscopy and Spectral Analysis, 2023, 43(5): 1628−1635. doi: 10.3964/j.issn.1000-0593(2023)-05-1628-08
    [52]
    Shi W J, Lü C W, He J, et al. Nature Differences of Humic Acids Fractions Induced by Extracted Sequenceas Explanatory Factors for Binding Characteristics of Heavy Metals[J]. Ecotoxicology and Environmental Safety, 2018, 154: 59−68. doi: 10.1016/j.ecoenv.2018.02.013
    [53]
    Welikala D, Lehto N, Hartland A, et al. Cadmium Mobilisation by Dissolved Organic Matter in Contaminated Soils Amended with Compost and Peat[J]. Geophysical Research Abstracts, 2019, 21(1): 1−13. doi: 10.1016/j.scitotenv.2022.153985
    [54]
    Tang X Y, Hidetaka K, Katsuhiro S. Liming Effects on Dissolved and Colloid-Associated Transport of Cadmium in Soil Under Intermittent Simulated Rainfall[J]. Journal of Hazardous Materials, 2020, 400: 123244. doi: 10.1016/j.jhazmat.2020.123244
    [55]
    邵坤, 赵改红, 赵朝辉. 腐植酸改性强化磁铁矿吸附水体中铅镉的实验研究[J]. 岩矿测试, 2019, 38(6): 715−723. doi: 10.15898/j.y-cnki.112131/d201901250017

    Shao K, Zhao G H, Zhao Z H. Enhancement of Pb and Cd Adsorption in Water Samples by Magnetite Using Humic Acid as Modifier[J]. Rock and Mineral Analysis, 2019, 38(6): 715−723. doi: 10.15898/j.y-cnki.112131/d201901250017
    [56]
    于倩雯, 吴寅凯, 尹俊权, 等. DOM对飞灰中重金属溶出影响及环境风险评估[J]. 环境科学与技术, 2022, 45(12): 174−181. doi: 10.19672/j.cnki.1003-6504.1349.22.338

    Yu Q W, Wu Y K, Yin J Q, et al. Effects of DOM on Leaching of Heavy Metals Inflyashanden Vironmental Risk Assessment[J]. Environmental Science & Technology, 2022, 45(12): 174−181. doi: 10.19672/j.cnki.1003-6504.1349.22.338
    [57]
    Wang P C, Peng H, Liu J L, et al. Effects of Exogenous Dissolved Organic Matter on the Adsorption-Desorption Behaviors and Bioavailabilities of Cd and Hg in a Plant-Soil System[J]. The Science of the Total Environment, 2020, 728: 138252. doi: 10.1016/j.scitotenv.2020.138252
    [58]
    李静, 林青, 徐绍辉. 不同pH/离子强度时Cu/Cd复合污染土壤解吸和迁移特征[J]. 土壤学报, 2023, 60(4): 1026−1034.

    Li J, Lin Q, Xu S H. Desorption and Migration Characteristics of Cu/Cd Composite Contaminated Soil Under Different pH/Ionic Strength[J]. Acta Pedologica Sinica, 2023, 60(4): 1026−1034.
    [59]
    刘小兰, 宋志鑫, 宋刚福, 等. 水体溶解性有机质与重金属影响机理的研究进展[J]. 环境科技, 2024, 37(2): 62−68. doi: 10.19824/j.cnki.cn32-1786/x.2024.0021

    Liu X L, Song Z X, Song G F, et al. Research Progress on Interaction Mechanism Between Dissolved Organic Matter and Heavy Metalsin Water[J]. Environmental Science and Technology, 2024, 37(2): 62−68. doi: 10.19824/j.cnki.cn32-1786/x.2024.0021
    [60]
    曾祥峰, 王祖伟, 魏树和, 等. 碱性条件下胡敏酸吸附镉的特征研究[J]. 生态环境学报, 2014, 23(10): 1691−1696. doi: 10.16258/j.cnki.1674-5906.2014.10.015

    Zeng X F, Wang Z W, Wei S H, et al. Adsorption Features of Cadmium by Humic Acid in Alkaline Conditions[J]. Ecology and Environmental Sciences, 2014, 23(10): 1691−1696. doi: 10.16258/j.cnki.1674-5906.2014.10.015
    [61]
    郑骁, 王学松, 陈光, 等. 离子强度和pH对针铁矿吸附水溶液中Cd(Ⅱ)的影响[J]. 环境工程, 2019, 37(7): 119−123. doi: 10.13205/j.hjgc.201907022

    Zheng X, Wang X S, Chen G, et al. The Effect of Ionic Strength and pH on the Adsorption of Cd(Ⅱ) in Aqueous Solution by Goethite[J]. Environmental Engineering, 2019, 37(7): 119−123. doi: 10.13205/j.hjgc.201907022
    [62]
    张康, 戴亮, 赵伟繁, 等. 污泥腐殖酸对Cd2+的吸附特性[J]. 环境科学研究, 2020, 33(6): 1459−1468. doi: 10.13198/j.issn.1001-6929.2020.04.14

    Zhang K, Dai L, Zhao W F, et al. Adsorption Properties of Sludge-Based Humic Acid to Cd2+[J]. Research of Environmental Sciences, 2020, 33(6): 1459−1468. doi: 10.13198/j.issn.1001-6929.2020.04.14
    [63]
    杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005, 20(4): 539−543.

    Du C Y, Zu Y Q, Li Y. Effect of pH and Organic Matter on the Bioavailability Cd and Zn in Soil[J]. Journal of Yunnan Agricultural University, 2005, 20(4): 539−543.
    [64]
    Tang H M, Xiao B H, Xiao P W. Interaction of Ca2+ and Soil Humic Acid Characterized by a Joint Experimental Platform of Potentiometrictration, UV-Visible Spectroscopy, and Fluorescence Spectroscopy[J]. Acta Geochimica, 2021, 40(3): 300−311. doi: 10.1007/s11631-021-00453-7
    [65]
    He E, Lu C W. Binding Characteristics of Cu2+ to Natural Humic Acid Fractions Sequentially Extracted from the Lake Sediments[J]. Environmental Science & Pollution Research, 2016, 23(22): 22667−22677. doi: 10.1007/s11356-016-7487-2
    [66]
    Zhang Z R, Shi W J. Binding Mechanism Between Fulvic Acid and Heavy Metals: Integrated Interpretation of Binding Experiments, Fraction Characterizations, and Models[J]. Water Air & Soil Pollution, 2020, 231(4): 1−12. doi: 10.1007/s11270-020-04558-2
    [67]
    Hu X P, Qu C C, Han Y, et al. Elevated Temperature Altered the Binding Sequence of Cd with DOM in Arable Soils[J]. Chemosphere, 2022, 288(2): 132572. doi: 10.1016/j.Chemosphere.2021.132572
    [68]
    Cornu J Y, Denaix L, Lacoste J. Impact of Temperature on the Dynamics of Organic Matter and on the Soil-to-Plant Transfer of Cd, Zn and Pb in a Contaminated Agricultural Soil[J]. Environmental Science and Pollution Research, 2016, 23(4): 2997−3007. doi: 10.1007/s11356-015-5432-4
    [69]
    Tjisse H, Shamim M, Pierre B D, et al. Natural and Pyrogenic Humic Acids at Goethite and Natural Oxide Surfaces Interacting with Phosphate[J]. Environmental Science & Technology, 2013, 47(16): 9182−9189. doi: 10.1021/es400997n
    [70]
    Ye Q T, Ding Z C, Li R, et al. Kinetics of Cadmium (Cd), Nickel (Ni), and Lead (Pb) Release from Fulvic Acid: Role of Reassociation Reactions and Quantitative Models[J]. Science of the Total Environment, 2022, 843: 156996. doi: 10.1016/j.scitotenv.2022.156996
    [71]
    Sun C M, Peng L, Chen A W, et al. Effects and Possible Mechanisms of Dissolved Organic Matter Originated from Cattle Manure on Adsorption of Cadmium by Periphyton[J]. Journal of Water Process Engineering, 2021, 43: 1−8. doi: 10.1016/j.jwpe.2021.102258
    [72]
    叶碧莹, 柏宏成, 刘高云, 等. 天然有机质不同分子量组分对紫色土镉吸附-解吸的影响[J]. 农业环境科学学报, 2019, 38(8): 1963−1972. doi: 10.11654/jaes.2018-1578

    Ye B Y, Bai H C, Liu G Y, et al. Effects of Different Molecular Weight Fractions of Natural Organic Matter on the Adsorption and Desorption of Cadmium in Purple Soil[J]. Journal of Agro-Environment Science, 2019, 38(8): 1963−1972. doi: 10.11654/jaes.2018-1578
    [73]
    Xu P, Sun C, Ye X Z, et al. The Effect of Biochar and Crop Straws on Heavy Metal Bioavailability and Plant Accumulation in a Cd and Pb Polluted Soil[J]. Ecotoxicology and Environmental Safety, 2016, 132: 94−100. doi: 10.1016/j.ecoenv.2016.05.031
    [74]
    赵芹, 程东会, 王燕, 等. 不同物料堆肥过程中溶解性有机质和腐殖酸的物质结构演化时序差异分析[J]. 环境工程技术学报, 2023, 13(4): 1514−1524. doi: 10.12153/j.issn.1674-991X.20221230

    Zhao Q, Cheng D H, Wang Y, et al. Analysis of the Time Series Difference of the Material Structure Evolution of DOM and Humic Acid During Composting of Different Materials[J]. Journal of Environmental Engineering Technology, 2023, 13(4): 1514−1524. doi: 10.12153/j.issn.1674-991X.20221230
    [75]
    韩林沛, 李蕾, 徐欣怡, 等. 餐厨垃圾高温预处理堆肥修复镉铅污染土壤潜能及机制[J/OL]. 环境科学(2024-07-12).

    Han L P, Li L, Xu X Y, et al. Potential and Mechanism of High-Temperature Pretreatment Composting of Food Waste for Amendment of Cadmium and Lead-Contaminated Soil[J/OL]. Environmental Science (2024-07-12).
    [76]
    Liang S S, Qing G, Lu J, et al. The Influence Mechanism of Dissolved Organic Matter on the Adsorption of Cd(Ⅱ) by Calcite[J]. Environmental Science and Pollution Research International, 2021, 28(28): 1−10. doi: 10.1007/s11356-021-14585-z
    [77]
    Palansooriya K N, Shaheen S M, Chen S S, et al. Soil Amendments for Immobilization of Potentially Toxic Elements in Contaminated Soils: A Critical Review[J]. Environment International, 2020, 134.
    [78]
    Yu Z, Liu X, Zhao M, et al. Hyperthermophilic Composting Accelerates the Humifcation Process of Sewage Sludge: Molecular Characterization of Dissolved Organic Matter Using EEM-PARAFAC and Two-Dimensional Correlation Spectroscopy[J]. Bioresource Technology, 2019, 274: 198−206. doi: 10.1016/j.biortech.2018.11.084
    [79]
    方宇潇, 张维, 崔俊芳, 等. 猪粪源DOM对三峡消落带土壤吸附Cd的影响[J]. 农业环境科学学报, 2020, 39(6): 1240−1248. doi: 10.13254/j.jare.2020.0331

    Fang Y X, Zhang W, Cui J F, et al. Effects of Pig Manure-Derived Dissolved Organic Matter on the Adsorption of Cadmium to Soils in the Three Gorges Reservoir Region, China[J]. Journal of Agro-Environment Science, 2020, 39(6): 1240−1248. doi: 10.13254/j.jare.2020.0331
    [80]
    张维, 侯孟彬, 伍诗宇, 等. 猪粪源溶解性有机质对锰矿区耕地土壤中镉迁移的影响[J]. 环境科学研究, 2024, 37(9): 1997−2005. doi: 10.13198/j.issn.1001-6929.2024.05.17

    Zhang W, Hou M B, Wu S Y, et al. Effect of Manure-Derived Dissolved Organic Matter on the Transport of Cadmium Through Tillage Soil in a Manganese Mining Area[J]. Research of Environmental Sciences, 2024, 37(9): 1997−2005. doi: 10.13198/j.issn.1001-6929.2024.05.17
    [81]
    Bao Y P, Bolan N S, Lai J H, et al. Interactions Between Organic Matter and Fe(hydr)oxides and Their Influences on Immobilization and Remobilization of Metal(loid)s: A Review[J]. Critical Reviews in Environmental Science and Technology,2021, 1974766.
    [82]
    Min T, Luo T, Chen L L. Effect of Dissolved Organic Matter on the Phytore Mediation of Cd-Contaminated Soil by Cotton[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112842. doi: 10.1016/j.ecoenv.2021.112842
    [83]
    Lian M H, Wang J, Ma Y Y. Infuence of DOM and Its Subfractions on the Mobilization of Heavy Metals in Hizosphere Soil Solution[J]. Scientifc Reports, 2022, 12: 14082. doi: 10.11654/jaes.2019-1305
    [84]
    Li Y, Fang F, Wei J, et al. Humic Acid Fertilizer Improved Soil Properties and Soil Microbial Diversity of Continuous Cropping Peanut: A Three Year Experiment[J]. Scientific Reports, 2019, 9(1): 12014. doi: 10.1038/s41598-019-48620-4

Catalog

    Article views (39) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return