Citation: | LU Qianshu,YE Yuanshun,WANG Yinjian,et al. Application of EDTA Coordination Titration Method in Field Detection of Zinc in Polymetallic Ores[J]. Rock and Mineral Analysis,2024,43(5):812−820. DOI: 10.15898/j.ykcs.202405220116 |
The accuracy and speed of zinc detection in polymetallic ores directly affect the accuracy and efficiency of field zinc exploration. At present, the transportation of polymetallic ore samples to the laboratory for testing has problems such as long addition cycles, insufficient stability and accuracy in detecting high levels of zinc. The effects of different methods of removing organic matter and sulfur from polymetallic ore samples, different oxidants, whether the sample solution was centrifuged, and different ammonia removal methods on the detection speed, stability, and accuracy of zinc in polymetallic ore samples were compared. A EDTA coordination titration method that can quickly detect zinc in polymetallic ore samples in the field was developed. Using this method, six parallel analyses were conducted on four polymetallic national standard materials with low, medium, and high zinc content. The relative deviation and relative error of zinc content were 0.00% to 2.11% and 0.00% to 2.41%, respectively. The research results indicate that using high-temperature calcination to remove organic matter and sulfur from polymetallic ore samples, and centrifuging and filtering the polymetallic ore sample solution can greatly improve the sample pretreatment speed. The use of milder oxidants and dropwise addition of hydrochloric acid for ammonia removal can improve the stability and accuracy of the detection method.
[1] |
Mohr S, Giurco D, Retamal M, et al. Global projection of lead-zinc supply from known resources[J]. Resources, 2018, 7(1): 17. doi: 10.3390/resources7010017
|
[2] |
孙传尧, 宋振国, 朱阳戈, 等. 中国铜铝铅锌矿产资源开发利用现状及安全供应战略研究[J]. 中国工程科学, 2019, 21(1): 133−139. doi: 10.15302/J-SSCAE-2019.01.019
Sun C Y, Song Z G, Zhu Y G, et al. Exploitation and utilization status and safe supply strategy of copper, aluminum, lead, and zinc resources in China[J]. Strategic Study of CAE, 2019, 21(1): 133−139. doi: 10.15302/J-SSCAE-2019.01.019
|
[3] |
肖细炼, 夏金龙, 李小丹, 等. 碱熔-电感耦合等离子体发射光谱法测定湖南香花岭矿区锡铅锌矿床中的锡铅锌[J]. 岩矿测试, 2023, 42(1): 125−135. doi: 10.15898/j.cnki.11-2131/td.202107290087
Xiao X L, Xia J L, Li X D, et al. Determination of tin, lead and zinc in a tin-lead-zinc deposit in Xianghualing mining area, Hunan Province by inductively coupled plasma-optical emission spectrometry with alkali fusion[J]. Rock and Mineral Analysis, 2023, 42(1): 125−135. doi: 10.15898/j.cnki.11-2131/td.202107290087
|
[4] |
杨林, 邹国庆, 周武权, 等. 碱熔-电感耦合等离子体发射光谱(ICP-OES)法测定钨锡矿石中钨锡钼铜铅锌硫砷[J]. 中国无机分析化学, 2023, 13(11): 1191−1196. doi: 10.3969/j.issn.2095-1035.2023.11.005
Yang L, Zou G Q, Zhou W Q, et al. Determination of W, Sn, Mo, Cu, Pb, Zn, S and As in tungsten-tin ore by inductively coupled plasma-optical emission spectrometry (ICP-OES) with alkali fusion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(11): 1191−1196. doi: 10.3969/j.issn.2095-1035.2023.11.005
|
[5] |
王冠, 董俊, 徐国栋, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法结合扫描电镜-能谱测定锡矿石中锡钨锌铜铁锰[J]. 岩矿测试, 2023, 42(1): 114−124. doi: 10.15898/j.cnki.11-2131/td.202102100023
Wang G, Dong J, Xu G D, et al. Determination of tin, tungsten, zinc, copper, iron, and manganese in tin ore by lithium metaborate fusion-inductively coupled plasma-optical emission spectrometry combined with scanning electron microscopy-energy dispersive X-ray spectro-metry[J]. Rock and Mineral Analysis, 2023, 42(1): 114−124. doi: 10.15898/j.cnki.11-2131/td.202102100023
|
[6] |
Barcelos D A, Pontes F V M, da Silva Fernanda A N G, et al. Gold mining tailing:Environmental availability of metals and human health risk assessment[J]. Journal of Hazardous Materials, 2020, 397: 122721. doi: 10.1016/j.jhazmat.2020.122721
|
[7] |
王文芳, 汪永顺. 混合酸溶-电感耦合等离子体发射光谱(ICP-OES)法同时测定多金属矿石中铜铅锌钼[J]. 中国无机分析化学, 2023, 13(3): 256−262. doi: 10.3969/j.issn.2095-1035.2023.03.009
Wang W F, Wang Y S. Simultaneous determination of copper, lead, zinc and molybdenum in polymetallic ores by inductively coupled plasma-optical emission spectrometry with mixed acid dissolution[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(3): 256−262. doi: 10.3969/j.issn.2095-1035.2023.03.009
|
[8] |
丁玉龙. 超声酸提取-电感耦合等离子体发射光谱 (ICP-OES)法测定复配矿物质中铁锌[J]. 中国无机分析化学, 2022, 12(3): 139−144. doi: 10.3969/j.issn.2095-1035.2022.03.021
Ding Y L. Determination of Fe and Zn in compound minerals by inductively coupled plasma optical emission spectrometer (ICP-OES) with ultrasonic acid extraction [J]. Chinese Journal of Inorganic Analytical Chemistry , 2022, 12(3): 139−144. doi: 10.3969/j.issn.2095-1035.2022.03.021
|
[9] |
张世龙, 吴周丁, 刘小玲, 等. 电感耦合等离子体原子发射光谱法测定多金属矿石中铁、铜、铅、锌、砷、锑、钼和镉的含量[J]. 理化检验(化学分册), 2015, 51(7): 930−933. doi: 10.11973/lhjy-hx201507009
Zhang S L, Wu Z D, Liu X L, et al. ICP-AES determination of Fe, Cu, Pb, Zn, As, Sb, Mo and Cd in multi-metal ores[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(7): 930−933. doi: 10.11973/lhjy-hx201507009
|
[10] |
褚宁, 蒋晓光, 吴享文, 等. 三元硝酸盐预氧化熔融制样-波长色散X射线荧光光谱法测定锌精矿中锌、铜、铅、铁、铝、钙和镁[J]. 中国无机分析化学, 2021, 11(3): 47−55. doi: 10.3969/j.issn.2095-1035.2021.03.010
Chu N, Jiang X G, Wu X W, et al. Determination of zinc, copper, lead, iron, aluminum, calcium and magnesium in zinc sulfide concentrate by X-ray fluorescence spectrometry with ternary nitrate preoxidation and fusion sample preparation[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(3): 47−55. doi: 10.3969/j.issn.2095-1035.2021.03.010
|
[11] |
侯亚茹, 陆继龙, 范玉超, 等. 原子吸收光谱法测定岩石中铜、铅和锌的不确定度评定及方法改进[J]. 光谱学与光谱分析, 2022, 42(7): 2101−2106. doi: 10.3964/j.issn.1000-0593(2022)07-2101-06
Hou Y R, Lu J L, Fan Y C, et al. Uncertainty evaluation and method improvement of determination of copper, lead, and zinc in rocks by atomic absorption spectrometry[J]. Spectroscopy and Spectral Analysis, 2022, 42(7): 2101−2106. doi: 10.3964/j.issn.1000-0593(2022)07-2101-06
|
[12] |
汪更明. 滴定法连续测定铅锌矿中铅锌铜[J]. 冶金分析, 2014, 34(12): 70−73. doi: 10.13228/j.issn.1000-7571.2014.12.015
Wang G M. Continuous determination of lead, zinc and copper in lead-zinc mine by titration[J]. Metallurgical Analysis, 2014, 34(12): 70−73. doi: 10.13228/j.issn.1000-7571.2014.12.015
|
[13] |
谭秀丽, 左鸿毅, 王文杰. 电感耦合等离子体质谱法同时测定锌精矿中镓、锗、铟的含量[J]. 理化检验(化学分册), 2024, 60(2): 141−147. doi: 10.11973/lhjy-hx202402003
Tan X L, Zuo H Y, Wang W J. Simultaneous determination of Ga, Ge and In in zinc concentrate by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2024, 60(2): 141−147. doi: 10.11973/lhjy-hx202402003
|
[14] |
左鸿毅, 林若虚. 离子交换分离-Na2EDTA滴定法测定含镍钴锌精矿中锌的改进[J]. 冶金分析, 2022, 42(7): 46−53. doi: 10.13228/j.boyuan.issn1000-7571.011771
Zuo H Y, Lin R X. Improvement of ion exchange separation-Na2EDTA titration for the determination of zinc in nickel-cobalt-zinc concentrate[J]. Metallurgical Analysis, 2022, 42(7): 46−53. doi: 10.13228/j.boyuan.issn1000-7571.011771
|
[15] |
顾锋, 朱春要, 梁婷婷, 等. EDTA滴定法测定除尘灰中锌含量[J]. 中国无机分析化学, 2017, 7(2): 46−49. doi: 10.3969/j.issn.2095-1035.2017.02.012
Gu F, Zhu C Y, Liang T T, et al. Determination of zinc content in dust by EDTA titration method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(2): 46−49. doi: 10.3969/j.issn.2095-1035.2017.02.012
|
[16] |
范丽新, 汤淑芳. EDTA滴定法测定再生锌原料中的锌含量[J]. 中国无机分析化学, 2019, 9(1): 47−53. doi: 10.3969/j.issn.2095-1035.2019.01.011
Fan L X, Tang S F. Determination of zinc content in regenerated zinc material by EDTA titration method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(1): 47−53. doi: 10.3969/j.issn.2095-1035.2019.01.011
|
[17] |
刘君侠, 陈冉冉, 万双, 等. 沉淀分离-EDTA滴定法测定铜闪速冶炼烟尘中的锌量[J]. 中国无机分析化学, 2021, 11(2): 66−69. doi: 10.3969/j.issn.2095-1035.2021.02.014
Liu J X, Chen R R, Wan S, et al. Determination of zinc content in copper flash smelting dust by precipitation separation EDTA titration[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(2): 66−69. doi: 10.3969/j.issn.2095-1035.2021.02.014
|
[18] |
熊方祥. EDTA返滴定法测定高钴锌精矿中锌[J]. 冶金分析, 2023, 43(2): 93−98. doi: 10.13228/j.boyuan.issn1000-7571.011830
Xiong F X. Determination of zinc in high-cobalt zinc concentrate by EDTA back-titration method[J]. Metallurgical Analysis, 2023, 43(2): 93−98. doi: 10.13228/j.boyuan.issn1000-7571.011830
|
[19] |
赵之连, 王丹, 赖剑, 等. 锌精矿中锌量测定方法的改进[J]. 有色金属科学与工程, 2020, 11(3): 105−108. doi: 10.13264/j.cnki.ysjskx.2020.03.014
Zhao Z L, Wang D, Lai J, et al. Method improvement on the determination of zinc content in zinc concentrate[J]. Nonferrous Metals Science and Engineering, 2020, 11(3): 105−108. doi: 10.13264/j.cnki.ysjskx.2020.03.014
|
[20] |
刘锦, 张旭, 沈庆峰, 等. 分光光度法和光度滴定法联合测定湿法炼锌流程中钴渣浸出液中锌钴镍[J]. 冶金分析, 2019, 39(5): 25−31. doi: 10.13228/j.boyuan.issn1000-7571.010590
Liu J, Zhang X, Shen Q F, et al. Determination of zinc, cobalt and nickel in cobalt residue leaching solution in zinc hydrometallurgy by spectrophotometry and photometric titration[J]. Metallurgical Analysis, 2019, 39(5): 25−31. doi: 10.13228/j.boyuan.issn1000-7571.010590
|
[21] |
杨志伟, 韩峰, 冉光芝, 等. EDTA滴定法测定氧压浸出溶液中锌[J]. 冶金分析, 2018, 38(11): 71−74. doi: 10.13228/j.boyuan.issn1000-7571.010361
Yang Z W, Han F, Ran G Z, et al. Determination of zinc in oxygen pressure leaching solution by EDTA titration[J]. Metallurgical Analysis, 2018, 38(11): 71−74. doi: 10.13228/j.boyuan.issn1000-7571.010361
|
[22] |
覃辉平. 含铅镉锌精矿中锌的测定方法改进[J]. 湿法冶金, 2017, 36(1): 74−77, 82. doi: 10.13355/j.cnki.sfyj.2017.01.017
Qin H P. Improvement of detection method for zinc in zinc concentrate containing lead and cadmium[J]. Hydrometallurgy of China, 2017, 36(1): 74−77, 82. doi: 10.13355/j.cnki.sfyj.2017.01.017
|
[23] |
江荆, 魏雅娟, 邬景荣, 等. 丁二酮肟沉淀分离-EDTA滴定法测定含镍锌物料中锌[J]. 冶金分析, 2016, 36(11): 62−66. doi: 10.13228/j.boyuan.issn1000-7571.009814
Jiang J, Wei Y J, Wu J R, et al. Determination of zinc in zinc-bearing material containing nickel by EDTA titration after precipitation separation using dimethylglyoxime[J]. Metallurgical Analysis, 2016, 36(11): 62−66. doi: 10.13228/j.boyuan.issn1000-7571.009814
|
[24] |
杨理勤, 冯亮. EDTA滴定法连续测定铅精矿中铅和锌[J]. 中国无机分析化学, 2013, 3(2): 22−24. doi: 10.3969/j.issn.2095-1035.2013.02.005
Yang L Q, Feng L. Successive determination of lead and zinc contents in lead concentrates by EDTA titration method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(2): 22−24. doi: 10.3969/j.issn.2095-1035.2013.02.005
|
[25] |
都业俭, 姜玉娟, 唐新, 等. 电感耦合等离子体原子发射光谱法测定有机胺中铝钙铁镁锰铅锌[J]. 冶金分析, 2024, 44(2): 87−91. doi: 10.13228/j.boyuan.issn1000-7571.012217
Du Y J, Jiang Y J, Tang X, et al. Determination of aluminum, calcium, iron, magnesium, manganese, lead and zinc in organic amines by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2024, 44(2): 87−91. doi: 10.13228/j.boyuan.issn1000-7571.012217
|
[26] |
谢敏, 丁琼, 杨鹰. 工业锌粉中金属锌和全锌含量的分别测定——分析化学设计实验[J]. 实验技术与管理, 2020, 37(4): 44−47. doi: 10.16791/j.cnki.sjg.2020.04.011
Xie M, Ding Q, Yang Y. Determination of metal zinc and total zinc content in industrial zinc powder: Design experiment of analytical chemistry[J]. Experimental Technology and Management, 2020, 37(4): 44−47. doi: 10.16791/j.cnki.sjg.2020.04.011
|
[27] |
苏铁军, 夏金强, 李克娥. 配位滴定法测定锌含量的合适酸度条件研究[J]. 中国无机分析化学, 2022, 12(3): 145−150. doi: 10.3969/j.issn.2095-1035.2022.03.022
Su T J, Xia J Q, Li K E. Study on suitable acidity conditions for determination of zinc content by coordination titration[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(3): 145−150. doi: 10.3969/j.issn.2095-1035.2022.03.022
|
[28] |
罗开良, 魏巍. EDTA滴定法结合原子吸收光谱法测定镉团中锌铅镉[J]. 冶金分析, 2023, 43(4): 84−89. doi: 10.13228/j.boyuan.issn1000-7571.011982
Luo K L, Wei W. Determination of zinc, lead and cadmium in cadmium cluster by EDTA titration combined with atomic absorption spectrometry[J]. Metallurgical Analysis, 2023, 43(4): 84−89. doi: 10.13228/j.boyuan.issn1000-7571.011982
|
[29] |
王蕾, 范丽新. 返滴定法测定含镍锌物料中的锌含量[J]. 中国无机分析化学, 2020, 10(5): 67−72. doi: 10.3969/j.issn.2095-1035.2020.05.016
Wang L, Fan L X. Determination of zinc content in nickel & zinc containing materials by return titration method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(5): 67−72. doi: 10.3969/j.issn.2095-1035.2020.05.016
|
[30] |
魏雅娟, 吴雪英, 钟贵远, 等. EDTA滴定法测定含锌物料中氧化锌[J]. 中国无机分析化学, 2017, 7(2): 63−68. doi: 10.3969/j.issn.2095-1035.2017.02.016
Wei Y J, Wu X Y, Zhong G Y, et al. Determination of zinc oxide content in zinc containing materials by EDTA titration[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(2): 63−68. doi: 10.3969/j.issn.2095-1035.2017.02.016
|