• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHANG Jing,XU Naicen,SHEN Jialin,et al. Influence of Rare Earth Terbium and Lanthanum Doping on the Lattice Field and Luminescence Performance of Gadolinium Oxysulfide[J]. Rock and Mineral Analysis,2025,44(2):252−265. DOI: 10.15898/j.ykcs.202405070105
Citation: ZHANG Jing,XU Naicen,SHEN Jialin,et al. Influence of Rare Earth Terbium and Lanthanum Doping on the Lattice Field and Luminescence Performance of Gadolinium Oxysulfide[J]. Rock and Mineral Analysis,2025,44(2):252−265. DOI: 10.15898/j.ykcs.202405070105

Influence of Rare Earth Terbium and Lanthanum Doping on the Lattice Field and Luminescence Performance of Gadolinium Oxysulfide

More Information
  • Received Date: May 06, 2024
  • Revised Date: September 22, 2024
  • Accepted Date: September 25, 2024
  • Available Online: November 12, 2024
  • Published Date: November 12, 2024
  • HIGHLIGHTS
    (1) Tb3+ doped Gd2O2S phosphors were prepared via the sulfur-melting method, and the impact of Tb3+ doping concentration on the fluorescence properties of Gd2O2S was studied.
    (2) The rare earth ion La3+ was introduced to substitute the matrix ion Gd3+ in Gd2O2S, altering the crystal field environment surrounding Tb3+, effectively improved the fluorescence properties of Gd2O2S.
    (3) The energy transfer mechanisms of Tb3+ and La3+ within the Gd2O2S matrix were explored, and the mechanism of action of rare earth ion doping on the Gd2O2S phosphor was analyzed.

    The main focus of this article lies in the investigation of gadolinium oxysulfide. By using the sulfur melting technique, fluorescent powder was created, with doping ions Tb3+ and La3+ of rare earth integrated. Various methods such as fluorescence spectroscopy, X-ray diffraction were employed to investigate how rare earth terbium and lanthanum doping impacts the lattice structure and luminescent capabilities of gadolinium oxysulfide. The experimental results indicate that the fluorescent powder has a pure hexagonal crystal structure. The luminescence intensity of the fluorescent powder reaches its maximum when the doping concentration of Tb3+ is 2mol%. When the La3+ doping concentration is 60mol%, the luminescence intensity is 1.9 times that of the undoped La3+ sample. Therefore, introducing rare earth Terbium and Lanthanum atoms can effectively improve the optical properties of fluorescent powders. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202405070105.

  • [1]
    Maharram J, Kelly E C, Cameron L R, et al. Impact of Structural Changes on Energy Transfer in the Anion-Engineered Re3+: Y2O3 Through Low-Temperature Synthesis Approach[J]. The Journal of Physical Chemistry C, 2024, 128(6): 2625−2633. doi: 10.1021/acs.jpcc.3c07132
    [2]
    Ma Y, Lu W, Xu Z L, et al. RE2O2S: Tb3+ (RE=Y, La, Gd): Comparable Research on Morphology, Luminescence, Thermal Stability and Magnetic Property[J]. Ceramics International, 2023, 49(9): 14367−14376. doi: 10.1016/j.ceramint.2023.01.025
    [3]
    Qian B F, Wang Z, Wang Y L, et al. Comparative Study on the Morphology, Growth Mechanism and Lumine-scence Property of RE2O2S: Eu3+ (RE = Lu, Gd, Y) Phosphors[J]. Journal of Alloys and Compounds, 2021, 870: 159273. doi: 10.1016/j.jallcom.2021.159273
    [4]
    韩萧萧, 梁涛, 王思雨, 等. 电感耦合等离子体质谱联用技术在稀土元素物源指示研究中的应用进展[J]. 岩矿测试, 2023, 42(1): 1−15. doi: 10.15898/j.cnki.11-2131/td.202210040186

    Han X X, Liang T, Wang S Y, et al. A Review of Research Progress on Provenance Indication of Rare Earth Elements by Inductively Coupled Plasma-Mass Spectrometry Hyphenated Techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 1−15. doi: 10.15898/j.cnki.11-2131/td.202210040186
    [5]
    黄海波, 袁静, 凌波, 等. 电弧发射光谱技术发展及其在地质领域的应用[J]. 华东地质, 2023, 44(1): 103−117. doi: 10.16788/j.hddz.32-1865/P.2023.01.009.

    Huang H B, Yuan J, Ling B, et al. Technical Development of Arc-Emission Spectroscopy and Its Application in Geological Sample Analysis[J]. East China Geology, 2023, 44(1): 103−117. doi: 10.16788/j.hddz.32-1865/P.2023.01.009.
    [6]
    Luo X X, Cao W H. Ethanol-Assistant Solution Combustion Method to Prepare La2O2S: Yb, Pr Nano-Meter Phosphor[J]. Journal of Alloys and Compounds, 2008, 460: 529−534. doi: 10.1016/j.jallcom.2007.06.011
    [7]
    李欣尉, 李超, 周利敏, 等. 富碳质地质样品Re-Os同位素体系研究进展[J]. 岩矿测试, 2023, 42(2): 221−238. doi: 10.15898/j.ykcs.202207200135

    Li X W, Li C, Zhou L M, et al. A Review of Research Progress on Re-Os Isotopic System of Carbon-Enriched Geological Samples[J]. Rock and Mineral Analysis, 2023, 42(2): 221−238. doi: 10.15898/j.ykcs.202207200135
    [8]
    许少鸿. 固体发光[M]. 北京: 清华大学出版社, 2011.

    Xu S H. Luminescence of Solid[M]. Beijing: Tsinghua University Press, 2011.
    [9]
    朱凡, 由芳田, 时秋峰, 等. GdBO3: Pr3+, Yb3+中Pr3+到Yb3+的能量传递及发光性质[J]. 发光学报, 2015(7): 751−756. doi: 10.3788/fgxb20153607.0751

    Zhu F, You F T, Shi Q F, et al. Luminescence Properties and Energy Transfer from Pr3+ to Yb3+ in GdBO3: Pr3+, Yb3+[J]. Chinese Journal of Luminescence, 2015(7): 751−756. doi: 10.3788/fgxb20153607.0751
    [10]
    Zhang L, Dong L P, Xu Y H, et al. Site Occupancy Preference of Bi3+ and Bi3+-Eu3+ Codoped Yttrium Galliate Phosphors for White LEDs[J]. Dalton Transactions, 2021, 50(4): 1366−1373. doi: 10.1039/d0dt03983g
    [11]
    赵文志, 谢旭, 张兵兵, 等. 深共晶溶剂在生态地质样品分析中的应用研究[J]. 华东地质, 2024, 45(1): 78−87. doi: 10.16788/j.hddz.32-1865/P.2024.01.006

    Zhao W Z, Xie X, Zhang B B, et al. Application of Deep Eutectic Solvent Extraction in Eco-Geological Sample Analysis[J]. East China Geology, 2024, 45(1): 78−87. doi: 10.16788/j.hddz.32-1865/P.2024.01.006
    [12]
    He F Q, Song E H, Chang H, et al. Interstitial Li+ Occupancy Enabling Radiative/Nonradiative Transition Control Toward Highly Efficient Cr3+-Based Near-Infrared Luminescence[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 31035−31043. doi: 10.1021/acsami.2c07495
    [13]
    陈江敏, 赖凤琴, 康立强, 等. 溶胶-凝胶法制备Gd2Zr2O7: Eu3+红色荧光粉及其发光性能研究[J]. 中国稀土学报, 2024, 42(4): 666−674. doi: 10.11785/S1000-4343.20240404

    Chen J M, Lai F Q, Kang L Q, et al. Preparation and Luminescence Properties of Gd2Zr2O7: Eu3+ Red Phosphor via Sol-Gel Method[J]. Journal of Rare Earths, 2024, 42(4): 666−674. doi: 10.11785/S1000-4343.20240404
    [14]
    Xie X L, Xiao P, Pang L, et al. Facile Synthesis of Yolk-ShellSi@void@C Nanoparticles with 3D Conducting Networks as Free-Standing Anodes in Lithium-Ionbatteries[J]. Journal of Alloys and Compounds, 2023, 931: 167473. doi: 10.1016/j.jallcom.2022.167473
    [15]
    刘晓, 张启燕, 史维鑫, 等. 北羌塘盆地东部上三叠统波里拉组碳酸盐岩矿物特征分析[J]. 岩矿测试, 2024, 43(3): 440−448. doi: 10.15898/j.ykcs.202212010227

    Liu X, Zhang Q Y, Shi W X, et al. Mineralogical Characteristics of Carbonate Rocks of the Upper Triassic Bolila Formation in the Eastern Part of the North Qiangtang Basin[J]. Rock and Mineral Analysis, 2024, 43(3): 440−448. doi: 10.15898/j.ykcs.202212010227
    [16]
    李江, 丁继扬, 黄新友. 稀土离子掺杂Gd2O2S闪烁陶瓷的研究进展[J]. 无机材料学报, 2021, 36(8): 789−806. doi: 10.15541/jim20200544

    Li J, Ding J Y, Huang X Y. Rare Earth Doped Gd2O2S Scintillation Ceramics[J]. Journal of Inorganic Materials, 2021, 36(8): 789−806. doi: 10.15541/jim20200544
    [17]
    温汉捷, 周正兵, 马万平, 等. 黑色岩系型战略性关键矿产资源研究进展及主要科学问题[J]. 矿物岩石地球化学通报, 2024, 43(1): 14−34. doi: 10.3724/j.issn.1007-2802.20240008

    Wen H J, Zhou Z B, Ma W P, et al. Research Progresses and Main Scientific Issues of Strategically Critical Minerals in Black Rock Series[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(1): 14−34. doi: 10.3724/j.issn.1007-2802.20240008
    [18]
    黄学勇, 高茂生, 侯国华, 等. 莱州湾海洋沉积物粒度特征及其环境响应分析[J]. 华东地质, 2023, 44(4): 402−414. doi: 10.16788/j.hddz.32-1865/P.2023.04.004

    Huang X Y, Gao M S, Hou G H, et al. Grain Size Characteristics and Environmental Response of Marine Sediments in Laizhou Bay[J]. East China Geology, 2023, 44(4): 402−414. doi: 10.16788/j.hddz.32-1865/P.2023.04.004
    [19]
    Qian B F, Wang Y L, Zhao Q R, et al. Adjustable Multi-Color lUminescence and Energy Transfer of Capsule-Shaped Gd2O2S: Tb3+, Sm3+ Phosphors[J]. Journal of Luminescence, 2022, 244: 118715. doi: 10.1016/j.jlumin.2021.118715
    [20]
    Jiang P, Li Z P, Lu W, et al. The pH Value Control of Morphology and Luminescence Properties of Gd2O2S: Tb3+ Phosphors[J]. Materials, 2022, 15(2): 646−657. doi: 10.3390/ma15020646
    [21]
    Machado I P, Wit J D, Arnoldus J B, et al. Highly Luminescent Gd2O2S: Er3+, Yb3+ Upconversion Microcrystals Obtained by a Time-and Energy-Saving Microwave-Assisted Solid-State Synthesis[J]. Journal of Alloys and Compounds, 2023, 942: 169083. doi: 10.1016/j.jallcom.2023.169083
    [22]
    陈洋. 多维铒镱掺杂钒酸镥钆晶体的制备、结构与性能研究[D]. 青岛: 山东大学, 2023.

    Chen Y. Preparation, Structure and Properties of Multidimensional Erbium Ytterbium Doped Lutetium Gadolinium Vanadate Crystals[D]. Qingdao: Shandong University, 2023.
    [23]
    李洪波, 韩汝取, 李晓喜, 等. 双钙钛矿(Y, Gd, Eu)BaCo2O5+ δ的制备和氧敏性[J]. 江苏科技大学学报(自然科学版), 2021, 35(5): 22−25, 58. doi: 10.11917/j.issn.1673-4807.2021.05.004

    Li H B, Han R Q, Li X X, et al. Synthesis and Oxygen Sensing Properties of Double Perovskite (Y, Gd, Eu)BaCo2O5+ δ[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2021, 35(5): 22−25, 58. doi: 10.11917/j.issn.1673-4807.2021.05.004
    [24]
    刘晓妍, 李婷, 罗旭东, 等. 制备工艺对La2O3掺杂氧化镁陶瓷性能的影响[J]. 耐火材料, 2022, 56(1): 34−37. doi: 10.3969/j.issn.1001-1935.2022.01.008

    Liu X Y, Li T, Luo X D, et al. Effects of Preparation Process on Properties of La2O3 Doped Magnesia Ceramics[J]. Refractories, 2022, 56(1): 34−37. doi: 10.3969/j.issn.1001-1935.2022.01.008
    [25]
    Hernández-Adame L, Méndez-Blas A, Ruiz-García J, et al. Synthesis, Characterization, and Photoluminescence Properties of Gd: Tb Oxysulfide Colloidal Particles[J]. Chemical Engineering Journal, 2014, 258: 136−145. doi: 10.1016/j.cej.2014.07.067
    [26]
    Guo H, Zhang H, Wei R F, et al. Preparation, Structural and Luminescent Properties of Ba2Gd2Si4O13: Eu3+ for White LEDs[J]. Optics Express, 2011, 19(102): A201−A206. doi: 10.1364/OE.19.00A201
    [27]
    王哲, 崔庚彦, 丁楠. YPO4: Ce3+, Tb3+反蛋白石光子晶体的制备及其发光性能的研究[J]. 光电子·激光, 2022, Laser,2019,30(10): 1038−1042. doi: 10.16136/j.joel.2019.10.0071

    Wang Z, Cui G Y, Ding N. Preparation and Modified Luminescence in VPO4: Ce3+, Tb3+ Inverse Opal Photonic Crystals[J]. Journal of Optoelectronics·Laser, 2022, Laser,2019,30(10): 1038−1042. doi: 10.16136/j.joel.2019.10.0071
    [28]
    朱宪忠, 储成林. Tb3+在Lu3Ga5O12中的光致发光性质及浓度猝灭机制[J]. 硅酸盐学报, 2015, 43(7): 963−968. doi: 10.14062/j.issn.0454-5648.2015.07.18

    Zhu X Z, Chu C L. Photoluminescent Properties and Mechanism of Concentration Quenching of Tb3+ in Lu3Ga5O12[J]. Journal of the Chinese Ceramic Society, 2015, 43(7): 963−968. doi: 10.14062/j.issn.0454-5648.2015.07.18
    [29]
    欧奕意, 王笑军, 梁宏斌. K3La(PO4)2基质中Tb3+的发光和能量传递[J]. 发光学报, 2022, 43(9): 1350−1360. doi: 10.37188/CJL.20220170

    Ou Y Y, Wang X J, Liang H B. Luminescence and Energy Transfer of Tb3+ in K3La(PO4)2[J]. Chinese Journal of Luminescence, 2022, 43(9): 1350−1360. doi: 10.37188/CJL.20220170
    [30]
    刘丹. 树枝状热活化延迟荧光材料的设计合成及光电性能研究[D]. 南京: 东南大学, 2021.

    Liu D. Synthesis and Photoelectric Property Investigation of Thermally Activated Delayed Fluorescent Dendrimers[D]. Nanjing: Southeast University, 2021.
    [31]
    Zhang B W, Zou H F, Guan H X, et al. Lu2O2S: Tb3+, Eu3+ Nanorods: Luminescence, Energy Transfer, and Multicolour Tuneable Emission[J]. CrystEngComm, 2016, 18(39): 7620−7628. doi: 10.1039/c6ce01441k
    [32]
    Vijayakumar R, Venkataiah G, Marimuthu K. Structural and Luminescence Studies on Dy3+ Doped Boro-Phosphate Glasses for White LED’s and Laser Application[J]. Journal of Alloys & Compounds, 2015, 652: 234−243. doi: 10.1016/j.jallcom.2015.08.219
    [33]
    王孝东, 刘晓华, 陈绍军, 等. CeO2: Eu3+粉末的溶胶-凝胶法制备及发光性能研究[J]. 光谱学与光谱分析, 2007, 27(11): 2182−2185.

    Wang X D, Liu X H, Chen S J, et al. Preparation of CeO2: Eu3+ Powders by Sol-Gel Method and Their Photoluminescence Properties[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2182−2185.
    [34]
    Wang F, Han Y, Lim C S, et al. Simultaneous Phase and Size Control of Upconversion Nanocrystals Through Lanthanide Doping[J]. Nature, 2010, 463: 1061−1065. doi: 10.1038/nature08777
    [35]
    叶建峰, 肖清泉, 秦铭哲, 等. Sc、Ce掺杂CrSi2的电子结构与光学性质的第一性原理[J]. 人工晶体学报, 2021, 50(8): 1413−1421. doi: 10.3969/j.issn.1000-985X.2021.08.004

    Ye J F, Xiao Q Q, Qin M Z, et al. First-Principles Study on Electronic Structure and Optical Properties of Sc and Ce doped CrSi2[J]. Journal of Synthetic Crystals, 2021, 50(8): 1413−1421. doi: 10.3969/j.issn.1000-985X.2021.08.004
    [36]
    李逸, 冯庆, 张礼强, 等. 锐钛矿型氧化物XO2 (X=Ti, Sn, Zr, Ir)表面氧化性对NH3气体光学气敏传感特性的影响[J]. 原子与分子物理学报, 2021, 38(5): 35−42. doi: 10.19855/j.1000-0364.2021.051005

    Li Y, Feng Q, Zhang L Q, et al. The Effect of Surface Oxidation of Anatase Oxides XO2 (X=Ti, Sn, Zr, Ir) on the Characteristics of NH3 Gas Optical Gas Sensing[J]. Journal of Atomic and Molecular Physics, 2021, 38(5): 35−42. doi: 10.19855/j.1000-0364.2021.051005
    [37]
    张富春, 张志勇, 张威虎, 等. Pb xSr1- xTiO3的电子结构[J]. 物理化学学报, 2009, 25(1): 61−66. doi: 10.3866/PKU.WHXB20090111

    Zhang F C, Zhang Z Y, Zhang W H, et al. Electronic Structure of Pb xSr1- xTiO3[J]. Acta Physico-Chimica Sinica, 2009, 25(1): 61−66. doi: 10.3866/PKU.WHXB20090111
    [38]
    Som S, Mitra P, Kumar V, et al. The Energy Transfer Phenomena and Colour Tunability in Y2O2S: Eu3+/Dy3+ Micro-Fibers for White Emission in Solid State Lighting Applications[J]. Dalton Transactions, 2014, 43(26): 9860−9871. doi: 10.1039/c4dt00349g
    [39]
    Jia G, Song Y H, Yang M, et al. Uniform YVO4: Ln3+ (Ln=Eu, Dy, and Sm) Nanocrystals: Solvothermal Synthesis and Luminescence Properties[J]. Optical Materials, 2009, 31(6): 1032−1037.
    [40]
    Bedekar V, Dutta D P, Mohapatra M, et al. Rare-Earth Doped Gadolinia Based Phosphors for Potential Multicolor and White Light Emitting Deep UV LEDs[J]. Nanotechnology, Nanotechnology, 2009, 20(12): 125707. doi: 10.1088/0957-4484/20/12/125707
    [41]
    Gupta S K, Ghosh P S, Yadav A K, et al. Luminescence Properties of SrZrO3/Tb3+ Perovskite: Host-Dopant Energy-Transfer Dynamics and Local Structure of Tb3+[J]. Inorganic Chemistry, 2016, 55(4): 1728−1740. doi: 10.1021/acs.inorgchem.5b02639
    [42]
    Tian L, Shen J L, Xu T, et al. Dy3+ Doped Thermally Stable Garnet-Based Phosphors: Luminescence Improvement by Changing the Host-Lattice Composition and Co-Doping Bi3+[J]. RSC Advances, 2016, 6(38): 32381−32388. doi: 10.1039/c6ra04761k
    [43]
    Liu C, Xia Z, Molokeev M S, et al. Synthesis, Crystal Structure, and Enhanced Luminescence of Garnet-Type Ca3Ga2Ge3O12: Cr3+ by Codoping Bi3+[J]. Journal of the American Ceramic Society, 2015, 98(6): 1870−1876. doi: 10.1111/jace.13553

Catalog

    Article views (75) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return