• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
GUO Guibin,YUAN Xiaoya,HUANG Lijin,et al. Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil[J]. Rock and Mineral Analysis,2025,44(1):127−139. DOI: 10.15898/j.ykcs.202404210093
Citation: GUO Guibin,YUAN Xiaoya,HUANG Lijin,et al. Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil[J]. Rock and Mineral Analysis,2025,44(1):127−139. DOI: 10.15898/j.ykcs.202404210093

Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil

More Information
  • Received Date: April 20, 2024
  • Revised Date: July 03, 2024
  • Accepted Date: July 10, 2024
  • Available Online: August 08, 2024
  • Published Date: August 06, 2024
  • HIGHLIGHTS
    (1) Parameters such as the adsorption capacity and adsorption kinetics of Sb(Ⅲ) and Sb(Ⅴ) by typical iron-manganese oxides and kaolinite under neutral conditions were obtained, and the effects of pH and other conditions on the adsorption capacity were investigated.
    (2) The in situ characterization of adsorbed and deposited Sb(Ⅲ) and Sb(Ⅴ) was conducted using Raman spectroscopy, and the characteristic Raman spectral signals of Sb2O3 formed by deposition at high concentrations of Sb(Ⅲ) were obtained.
    (3) Based on the adsorption experimental data and related characterizations, the adsorption mechanisms of Sb(Ⅲ) and Sb(Ⅴ) were analyzed. The results showed that chemical adsorption was the primary mechanism for antimony on the surface of the studied minerals, and deposition of high concentrations of Sb(Ⅲ) on the mineral surface was also possible.

    Human activities such as mineral mining and coal combustion cause a large amount of antimony to enter into environmental soil. Exploring the adsorption deposition behavior of antimony on typical soil minerals is important for predicting the environmental fate of antimony and preventing its pollution. Thus, six kinds of commonly found metal hydroxides and clay minerals in soil (namely hematite, goethite, ferrihydrite, aluminum oxide, ramsdellite, and kaolinite) were selected to investigate the adsorption thermodynamic and kinetic behavior of Sb(Ⅲ) and Sb(Ⅴ) on their surfaces, and speculate the adsorption mechanism. The order of adsorption capacities (mg/g) of six soil minerals for Sb(Ⅲ)/Sb(Ⅴ) were as follows: ferrihydrite (101.4, 55.9)>ramsdellite (16.52, 7.58)>goethite (13.30, 5.67)>hematite (5.13, 3.70)>aluminum oxide (1.66, 1.69)>kaolinite (0.27, 0.51). Affected by the speciation of antimony and the surface potential of minerals, acidic conditions were favorable for the adsorption of Sb(Ⅴ), while the adsorption of Sb(Ⅲ) was less affected by pH. The Sb2O3 formed after deposition was characterizedin situ by Raman spectroscopy. Sb(Ⅴ) adsorbed on the mineral by adsorption at different concentrations, while Sb(Ⅲ) deposits on the mineral surface at higher concentrations. The BRIEF REPORT is available for this paper athttp://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202404210093.

  • [1]
    Babushok V I, Deglmann P, Krämer R, et al. Influence of antimony-halogen additives on flame propagation[J]. Combustion Science and Technology, 2017, 189(2): 290−311. doi: 10.1080/00102202.2016.1208187
    [2]
    Nishad P A, Bhaskarapillai A. Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies[J]. Chemosphere, 2021, 277: 130252. doi: 10.1016/j.chemosphere.2021.130252
    [3]
    Jia X, Ma L, Liu J, et al. Reduction of antimony mobility from Sb-rich smelting slag by Shewanella oneidensis: Integrated biosorption and precipitation[J]. Journal of Hazardous Materials, 2022, 426: 127385. doi: 10.1016/j.jhazmat.2021.127385
    [4]
    Li J, Zheng B H, He Y, et al. Antimony contamination, consequences and removal techniques: A review[J]. Ecotoxicology and Environmental Safety, 2018, 156: 125−134. doi: 10.1016/j.ecoenv.2018.03.024
    [5]
    Filella M, Belzile N, Chen Y W. Antimony in the environment: A review focused on natural waters: Ⅰ. Occurrence[J]. Earth-Science Reviews, 2002, 57(1−2): 125−176. doi: 10.1016/S0012-8252(01)00070-8
    [6]
    He M, Wang X, Wu F, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421: 41−50.
    [7]
    牛斯达, 赵立群, 牛向龙, 等. 应用电子探针技术研究桂西南下雷锰矿床锰钾矿的结构特征[J]. 岩矿测试, 2022, 41(2): 239−250. doi: 10.15898/j.cnki.11-2131/td.202109040115

    Niu S D, Zhao L Q, Niu X L, et al. The application of EPMA in the textural characterization of cryptomelane in the Xialei manganese deposit, Southwest Guangxi[J]. Rock and Mineral Analysis, 2022, 41(2): 239−250. doi: 10.15898/j.cnki.11-2131/td.202109040115
    [8]
    Dupont D, Arnout S, Jones P T, et al. Antimony recovery from end-of-life products and industrial process residues: A critical review[J]. Journal of Sustainable Metallurgy, 2016, 2(1): 79−103. doi: 10.1007/s40831-016-0043-y
    [9]
    Chen L, Ren B, Deng X, et al. Potential toxic heavy metals in village rainwater runoff of antimony mining area, China: Distribution, pollution sources, and risk assessment[J]. Science of the Total Environment, 2024(920): 170702. doi: https://doi.org/10.1016/j.scitotenv.2024.170702
    [10]
    孟郁苗, 胡瑞忠, 高剑峰, 等. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 2016, 35(4): 339−348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

    Meng Y M, Hu R Z, Gao J F, et al. Research progress on Sb geochemistry and Sb isotopes[J]. Rock and Mineral Analysis, 2016, 35(4): 339−348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002
    [11]
    Su X, Wang X, Zhou Z, et al. Can antimony contamination in soil undermine the ecological contributions of earthworms?[J]. Science of the Total Environment, 2023, 904: 166305. doi: 10.1016/j.scitotenv.2023.166305
    [12]
    Vidya C S N, Shetty R, Vaculíková M, et al. Antimony toxicity in soils and plants, and mechanisms of its alleviation[J]. Environmental and Experimental Botany, 2022, 202: 104996. doi: 10.1016/j.envexpbot.2022.104996
    [13]
    Herath I, Vithanage M, Bundschuh J. Antimony as a global dilemma: Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017, 223: 545−559. doi: 10.1016/j.envpol.2017.01.057
    [14]
    Caplette J N, Wilson S C, Mestrot A. Antimony release and volatilization from organic-rich and iron-rich submerged soils[J]. Journal of Hazardous Materials, 2024, 470: 134230. doi: 10.1016/j.jhazmat.2024.134230
    [15]
    Chen L, Han Y, Li W, et al. Removal of Sb(Ⅴ) from wastewater via siliceous ferrihydrite: Interactions among ferrihydrite, coprecipitated Si, and adsorbed Sb(Ⅴ)[J]. Chemosphere, 2022, 291: 133043. doi: 10.1016/j.chemosphere.2021.133043
    [16]
    Kumar R, Jing C, Yan L. A critical review on arsenic and antimony adsorption and transformation on mineral facets[J/OL]. Journal of Environmental Sciences (2024-02-01). https://doi.org/10.1016/j.jes.2024.01.016
    [17]
    Zhou W, Zhou J, Feng X, et al. Antimony isotope fractionation revealed from EXAFS during adsorption on Fe(oxyhydr) oxides[J]. Environmental Science & Technology, 2023, 57(25): 9353−9361. doi: 10.1021/acs.est.3c01906
    [18]
    Hei E, He M, Zhang E, et al. Risk assessment of antimony-arsenic contaminated soil remediated using zero-valent iron at different pH values combined with freeze-thaw cycles[J]. Environmental Monitoring and Assessment, 2024, 196(5): 1−17. doi: 10.1007/s10661-024-12601-6
    [19]
    Peng L, Wang N, Xiao T, et al. A critical review on adsorptive removal of antimony from waters: Adsorbent species, interface behavior and interaction mechanism[J]. Chemosphere, 2023: 138529.
    [20]
    Sun Q, Liu C, Alves M E, et al. The oxidation and sorption mechanism of Sb on δ-MnO2[J]. Chemical Engineering Journal, 2018, 342: 429−437. doi: 10.1016/j.cej.2018.02.091
    [21]
    Nie J, Yao Z, Shao P, et al. Revisiting the adsorption of antimony on manganese dioxide: The overlooked dissolution of manganese[J]. Chemical Engineering Journal, 2022, 429: 132468. doi: 10.1016/j.cej.2021.132468
    [22]
    Wu Y, Sun G, Huang J H, et al. Antimony isotopic fractionation during intensive chemical weathering of basalt in the tropics[J]. Geochimica et Cosmochimica Acta, 2024, 367: 29−40. doi: 10.1016/j.gca.2023.12.029
    [23]
    Zhou W, Zhou A, Wen B, et al. Antimony isotope fractionation during adsorption on aluminum oxides[J]. Journal of Hazardous Materials, 2022, 429: 128317. doi: 10.1016/j.jhazmat.2022.128317
    [24]
    Xi J, He M, Lin C. Adsorption of antimony(Ⅲ) and antimony(V) on bentonite: Kinetics, thermodynamics and anion competition[J]. Microchemical Journal, 2011, 97(1): 85−91. doi: 10.1016/j.microc.2010.05.017
    [25]
    Dousova B, Lhotka M, Filip J, et al. Removal of arsenate and antimonate by acid-treated Fe-rich clays[J]. Journal of Hazardous Materials, 2018, 357: 440−448. doi: 10.1016/j.jhazmat.2018.06.028
    [26]
    Zhang Y, Ding C, Gong D, et al. A review of the environmental chemical behavior, detection and treatment of antimony[J]. Environmental Technology & Innovation, 2021, 24: 102026. doi: 10.1016/j.eti.2021.102026
    [27]
    Tang H, Hassan M U, Nawaz M, et al. A review on sources of soil antimony pollution and recent progress on remediation of antimony polluted soils[J]. Ecotoxicology and Environmental Safety, 2023, 266: 115583. doi: 10.1016/j.ecoenv.2023.115583
    [28]
    Schwertmann U, Cornell R M. Iron oxides in the laboratory: Preparation and characterization[M]. John Wiley & Sons, 2008.
    [29]
    Balboni E, Smith K F, Moreau L M, et al. Transformation of ferrihydrite to goethite and the fate of plutonium[J]. ACS Earth and Space Chemistry, 2020, 4(11): 1993−2006. doi: 10.1021/acsearthspacechem.0c00195
    [30]
    崔婷, 叶欣, 朱霞萍, 等. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试, 2023, 42(1): 167−176. doi: 10.15898/j.cnki.11-2131/td.202111250187

    Cui T, Ye X, Zhu X P, et al. Determination of various forms of iron and manganese oxides and the main controlling factors of absorption of Sb(Ⅲ) in soil[J]. Rock and Mineral Analysis, 2023, 42(1): 167−176. doi: 10.15898/j.cnki.11-2131/td.202111250187
    [31]
    Wang X, He M, Lin C, et al. Antimony(Ⅲ) oxidation and antimony(V) adsorption reactions on synthetic manganite[J]. Geochemistry, 2012, 72: 41−47. doi: 10.1016/j.chemer.2012.02.002
    [32]
    Sukul P, Lamshöft M, Zühlke S, et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems[J]. Chemosphere, 2008, 73(8): 1344−1350. doi: 10.1016/j.chemosphere.2008.06.066
    [33]
    Wu T, Liu C, Cui P, et al. Kinetics of coupled sorption and abiotic oxidation of antimony(Ⅲ) in soils[J]. Geoderma, 2023, 434: 116486. doi: 10.1016/j.geoderma.2023.116486
    [34]
    Liu X, Wang Y, Xiang H, et al. Unveiling the crucial role of iron mineral phase transformation in antimony(V) elimination from natural water[J]. Eco-Environment & Health, 2023, 2(3): 176−83. doi: 10.1016/j.eehl.2023.07.006
    [35]
    Mukhopadhyay R, Sarkar B, Barman A, et al. Arsenic adsorption on modified clay minerals in contaminated soil and water: Impact of pH and competitive anions[J]. Clean-Soil, Air, Water, 2021, 49(4): 2000259. doi: 10.1002/clen.202000259
    [36]
    Li Y, Liu J, Wang Y, et al. Contribution of components in natural soil to Cd and Pb competitive adsorption: Semi-quantitative to quantitative analysis[J]. Journal of Hazardous Materials, 2023, 441: 129883. doi: 10.1016/j.jhazmat.2022.129883
    [37]
    Yan L, Chan T, Jing C. Mechanistic study for antimony adsorption and precipitation on hematite facets[J]. Environmental Science & Technology, 2022, 56(5): 3138−3146. doi: 10.1021/acs.est.1c07801
    [38]
    随志磊. 极端条件下几种稀土盐和氧化锑的相变和发光研究[D]. 合肥: 中国科学技术大学, 2017: 10−50.

    Sui Z L. Studies on phase transitions and photo-luminescence of several rare earth sands and antimony trioxide in extreme conditions[D]. Hefei: University of Science and Technology of China, 2017: 10−50.
    [39]
    Pereira A L J, Gracia L, Santamaría-Pérez D, et al. Structural and vibrational study of cubic Sb2O3 under high pressure[J]. Physical Review B, 2012, 85(17): 174108. doi: 10.1103/PhysRevB.85.174108
    [40]
    Abrashev M V, Ivanov V G, Stefanov B S, et al. Raman spectroscopy of alpha-FeOOH (goethite) near antiferromagnetic to paramagnetic phase transition[J]. Journal of Applied Physics, 2020, 127(20): 205108.
    [41]
    de Faria D L A, Lopes F N. Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them?[J]. Vibrational Spectroscopy, 2007, 45(2): 117−121. doi: 10.1016/j.vibspec.2007.07.003
    [42]
    Chistyakova N, Antonova A, Elizarov I, et al. Mössbauer, nuclear forward scattering, and Raman spectroscopic approaches in the investigation of bioinduced transformations of mixed-valence antimony oxide[J]. The Journal of Physical Chemistry A, 2021, 125(1): 139−145. doi: 10.1021/acs.jpca.0c08865
    [43]
    Frost R L, Bahfenne S. Raman spectroscopic study of the antimonate mineral brizziite NaSbO3[J]. Radiation Effects and Defects in Solids, 2010, 165(3): 206−210. doi: 10.1080/10420150903513046
    [44]
    Zahn D R T. Vibrational spectroscopy of bulk and supported manganese oxides[J]. Physical Chemistry Chemical Physics, 1999, 1(1): 185−190. doi: 10.1039/A807821A
    [45]
    Julien C, Massot M, Rangan S, et al. Study of structural defects in γ-MnO2 by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2002, 33(4): 223−228. doi: 10.1002/jrs.838
    [46]
    Shim S H, Duffy T S. Raman spectroscopy of Fe2O3 to 62GPa[J]. American Mineralogist, 2002, 87(2−3): 318−326. doi: 10.2138/am-2002-2-314
    [47]
    Marshall C P, Dufresne W J B. Resonance Raman and polarized Raman scattering of single-crystal hematite[J]. Journal of Raman Spectroscopy, 2022, 53(5): 947−955. doi: 10.1002/jrs.6309
    [48]
    Basu A, Mookherjee M, Clapp S, et al. High-pressure Raman scattering and X-ray diffraction study of kaolinite, Al2Si2O5(OH)4[J]. Applied Clay Science, 2023, 245: 107144.
    [49]
    Frost R L, Fredericks P M, Kloprogge J T, et al. Raman spectroscopy of kaolinites using different excitation wavelengths[J]. Journal of Raman Spectroscopy, 2001, 32(8): 657−663. doi: 10.1002/jrs.722
    [50]
    Delbé K, de Sousa C, Grizet F, et al. Determination of the pressure dependence of Raman mode for an alumina-glass pair in hertzian contact[J]. Materials, 2022, 15(23): 8645. doi: 10.3390/ma15238645
    [51]
    Misra A, Bist H D, Navati M S, et al. Thin film of aluminum oxide through pulsed laser deposition: A micro-Raman study[J]. Materials Science and Engineering B, 2001, 79(1): 49−54. doi: 10.1016/S0921-5107(00)00554-7
  • Related Articles

    [1]LUO Weijia, FENG Chen, HOU Guohua, CHEN Jiawei. Progress on Redox Characteristics of an Iron Oxide-Ferrous System in the Hyporheic Zone[J]. Rock and Mineral Analysis, 2024, 43(2): 397-406. DOI: 10.15898/j.ykcs.202309090150
    [2]CHEN Kai, LIU Fei, YANG Zihan, XIANG Xin. Review on the Determination of Oxidant Demand for in-situ Chemical Oxidation Application[J]. Rock and Mineral Analysis, 2023, 42(2): 271-281. DOI: 10.15898/j.cnki.11-2131/td.202202170023
    [3]MENG Qing-guo, LIU Chang-ling, LI Cheng-feng, HAO Xi-luo. Characterization of Binary Hydrates Containing Methane by X-ray Diffraction and Microscopic Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 85-94. DOI: 10.15898/j.cnki.11-2131/td.202005290077
    [4]ZHANG Ye-yu, CAO Qian, HUANG Yi, QI Ming-hui, LI Xiao-fu, LIN Dan. Application of High-temperature Methane Adsorption Experiment to Study the Adsorption Capacity of Methane in Shales from the Wufeng Formation, Northeast Sichuan[J]. Rock and Mineral Analysis, 2020, 39(2): 188-198. DOI: 10.15898/j.cnki.11-2131/td.201908210126
    [5]Zhong-yu LI, Jiang-hua ZHAO, Jun HE, Yan-guang LI, Wei-liang LI, Wei HAN. Research on the Correlation between Methane and Hydrogen in Acid-hydrolyzed Gases for Geochemical Exploration Samples[J]. Rock and Mineral Analysis, 2018, 37(3): 313-319. DOI: 10.15898/j.cnki.11-2131/td.201710240170
    [6]Yu-feng CHEN, Xiu-li ZHENG, Jing LI, Xing-liang HE, Chang-ling LIU, Qing-guo MENG, De-di QIN, Pei-yu ZHANG. Study on Oxidation Rate and Isotope Fractionation of Methane in Bohai Sea Sediments[J]. Rock and Mineral Analysis, 2018, 37(2): 164-174. DOI: 10.15898/j.cnki.11-2131/td.201707100117
    [7]Wei-yi LIU, Yong CHEN, Miao WANG, Han-jing ZHANG. Research Progress on the Effect of Salts on the Stability of Methane Hydrate[J]. Rock and Mineral Analysis, 2018, 37(2): 111-120. DOI: 10.15898/j.cnki.11-2131/td.201706110098
    [8]Hong-bo REN, Chang-ling LIU, Min CHEN, Xue-hui LIN, Yuan-yuan ZHANG, Xing-bo DENG. The Concentration Changes of Major Ions in Seawater During the Methane Hydrate Formation Process[J]. Rock and Mineral Analysis, 2013, 32(2): 278-283.
    [9]BAI Dekui, ZHU Xiaping, WANG Yanyan, ZENG Meilan. Study on Adsorption Behaviors of As(Ⅲ) by Manganese Oxide, Iron Oxide and Aluminium Oxide[J]. Rock and Mineral Analysis, 2010, 29(1): 55-60.
    [10]Determination of Ferrous Oxide in Sea Sediments[J]. Rock and Mineral Analysis, 1999, (3): 198-200.
  • Cited by

    Periodical cited type(4)

    1. 刘明义,吴柏林,杨松林,郝欣,王苗,李琪,林周洋,张效瑞. 松辽盆地砂岩型铀矿铀含量配分比例的半定量分析. 岩矿测试. 2024(02): 224-233 . 本站查看
    2. 李强,赵兴齐,陈擎,陈云杰,陈斌,荣骁,赵旭,康利刚,时志浩,李天石,龚奇福. 柴西缘英东地区上油砂山组黄铁矿与砂岩型铀矿化关系研究. 大地构造与成矿学. 2024(06): 1274-1285 .
    3. 李会来,李凡,张鼎文,郭伟,靳兰兰,胡圣虹. 低温剥蚀LA-ICP-MS准确测定硫化物矿物多元素分析研究. 岩矿测试. 2023(05): 970-982 . 本站查看
    4. 庞康,吴柏林,孙涛,郝关清,雷安贵,杨松林,刘池阳,傅斌,权军明,王苗,郝欣,刘明义,李琪,张效瑞. 鄂尔多斯盆地砂岩型铀矿碳酸盐岩碳氧同位素及其天然气-水混合流体作用特征. 中国地质. 2022(05): 1571-1590 .

    Other cited types(1)

Catalog

    Article views (130) PDF downloads (36) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return