• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
GUO Guibin,YUAN Xiaoya,HUANG Lijin,et al. Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil[J]. Rock and Mineral Analysis,2025,44(1):127−139. DOI: 10.15898/j.ykcs.202404210093
Citation: GUO Guibin,YUAN Xiaoya,HUANG Lijin,et al. Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil[J]. Rock and Mineral Analysis,2025,44(1):127−139. DOI: 10.15898/j.ykcs.202404210093

Adsorption-Deposition Behavior of Typical Minerals on Antimony in Soil

More Information
  • Received Date: April 20, 2024
  • Revised Date: July 03, 2024
  • Accepted Date: July 10, 2024
  • Available Online: August 08, 2024
  • Published Date: August 06, 2024
  • HIGHLIGHTS
    (1) Parameters such as the adsorption capacity and adsorption kinetics of Sb(Ⅲ) and Sb(Ⅴ) by typical iron-manganese oxides and kaolinite under neutral conditions were obtained, and the effects of pH and other conditions on the adsorption capacity were investigated.
    (2) The in situ characterization of adsorbed and deposited Sb(Ⅲ) and Sb(Ⅴ) was conducted using Raman spectroscopy, and the characteristic Raman spectral signals of Sb2O3 formed by deposition at high concentrations of Sb(Ⅲ) were obtained.
    (3) Based on the adsorption experimental data and related characterizations, the adsorption mechanisms of Sb(Ⅲ) and Sb(Ⅴ) were analyzed. The results showed that chemical adsorption was the primary mechanism for antimony on the surface of the studied minerals, and deposition of high concentrations of Sb(Ⅲ) on the mineral surface was also possible.

    Human activities such as mineral mining and coal combustion cause a large amount of antimony to enter into environmental soil. Exploring the adsorption deposition behavior of antimony on typical soil minerals is important for predicting the environmental fate of antimony and preventing its pollution. Thus, six kinds of commonly found metal hydroxides and clay minerals in soil (namely hematite, goethite, ferrihydrite, aluminum oxide, ramsdellite, and kaolinite) were selected to investigate the adsorption thermodynamic and kinetic behavior of Sb(Ⅲ) and Sb(Ⅴ) on their surfaces, and speculate the adsorption mechanism. The order of adsorption capacities (mg/g) of six soil minerals for Sb(Ⅲ)/Sb(Ⅴ) were as follows: ferrihydrite (101.4, 55.9)>ramsdellite (16.52, 7.58)>goethite (13.30, 5.67)>hematite (5.13, 3.70)>aluminum oxide (1.66, 1.69)>kaolinite (0.27, 0.51). Affected by the speciation of antimony and the surface potential of minerals, acidic conditions were favorable for the adsorption of Sb(Ⅴ), while the adsorption of Sb(Ⅲ) was less affected by pH. The Sb2O3 formed after deposition was characterizedin situ by Raman spectroscopy. Sb(Ⅴ) adsorbed on the mineral by adsorption at different concentrations, while Sb(Ⅲ) deposits on the mineral surface at higher concentrations. The BRIEF REPORT is available for this paper athttp://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202404210093.

  • [1]
    Babushok V I, Deglmann P, Krämer R, et al. Influence of antimony-halogen additives on flame propagation[J]. Combustion Science and Technology, 2017, 189(2): 290−311. doi: 10.1080/00102202.2016.1208187
    [2]
    Nishad P A, Bhaskarapillai A. Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies[J]. Chemosphere, 2021, 277: 130252. doi: 10.1016/j.chemosphere.2021.130252
    [3]
    Jia X, Ma L, Liu J, et al. Reduction of antimony mobility from Sb-rich smelting slag by Shewanella oneidensis: Integrated biosorption and precipitation[J]. Journal of Hazardous Materials, 2022, 426: 127385. doi: 10.1016/j.jhazmat.2021.127385
    [4]
    Li J, Zheng B H, He Y, et al. Antimony contamination, consequences and removal techniques: A review[J]. Ecotoxicology and Environmental Safety, 2018, 156: 125−134. doi: 10.1016/j.ecoenv.2018.03.024
    [5]
    Filella M, Belzile N, Chen Y W. Antimony in the environment: A review focused on natural waters: Ⅰ. Occurrence[J]. Earth-Science Reviews, 2002, 57(1−2): 125−176. doi: 10.1016/S0012-8252(01)00070-8
    [6]
    He M, Wang X, Wu F, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421: 41−50.
    [7]
    牛斯达, 赵立群, 牛向龙, 等. 应用电子探针技术研究桂西南下雷锰矿床锰钾矿的结构特征[J]. 岩矿测试, 2022, 41(2): 239−250. doi: 10.15898/j.cnki.11-2131/td.202109040115

    Niu S D, Zhao L Q, Niu X L, et al. The application of EPMA in the textural characterization of cryptomelane in the Xialei manganese deposit, Southwest Guangxi[J]. Rock and Mineral Analysis, 2022, 41(2): 239−250. doi: 10.15898/j.cnki.11-2131/td.202109040115
    [8]
    Dupont D, Arnout S, Jones P T, et al. Antimony recovery from end-of-life products and industrial process residues: A critical review[J]. Journal of Sustainable Metallurgy, 2016, 2(1): 79−103. doi: 10.1007/s40831-016-0043-y
    [9]
    Chen L, Ren B, Deng X, et al. Potential toxic heavy metals in village rainwater runoff of antimony mining area, China: Distribution, pollution sources, and risk assessment[J]. Science of the Total Environment, 2024(920): 170702. doi: https://doi.org/10.1016/j.scitotenv.2024.170702
    [10]
    孟郁苗, 胡瑞忠, 高剑峰, 等. 锑的地球化学行为以及锑同位素研究进展[J]. 岩矿测试, 2016, 35(4): 339−348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002

    Meng Y M, Hu R Z, Gao J F, et al. Research progress on Sb geochemistry and Sb isotopes[J]. Rock and Mineral Analysis, 2016, 35(4): 339−348. doi: 10.15898/j.cnki.11-2131/td.2016.04.002
    [11]
    Su X, Wang X, Zhou Z, et al. Can antimony contamination in soil undermine the ecological contributions of earthworms?[J]. Science of the Total Environment, 2023, 904: 166305. doi: 10.1016/j.scitotenv.2023.166305
    [12]
    Vidya C S N, Shetty R, Vaculíková M, et al. Antimony toxicity in soils and plants, and mechanisms of its alleviation[J]. Environmental and Experimental Botany, 2022, 202: 104996. doi: 10.1016/j.envexpbot.2022.104996
    [13]
    Herath I, Vithanage M, Bundschuh J. Antimony as a global dilemma: Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 2017, 223: 545−559. doi: 10.1016/j.envpol.2017.01.057
    [14]
    Caplette J N, Wilson S C, Mestrot A. Antimony release and volatilization from organic-rich and iron-rich submerged soils[J]. Journal of Hazardous Materials, 2024, 470: 134230. doi: 10.1016/j.jhazmat.2024.134230
    [15]
    Chen L, Han Y, Li W, et al. Removal of Sb(Ⅴ) from wastewater via siliceous ferrihydrite: Interactions among ferrihydrite, coprecipitated Si, and adsorbed Sb(Ⅴ)[J]. Chemosphere, 2022, 291: 133043. doi: 10.1016/j.chemosphere.2021.133043
    [16]
    Kumar R, Jing C, Yan L. A critical review on arsenic and antimony adsorption and transformation on mineral facets[J/OL]. Journal of Environmental Sciences (2024-02-01). https://doi.org/10.1016/j.jes.2024.01.016
    [17]
    Zhou W, Zhou J, Feng X, et al. Antimony isotope fractionation revealed from EXAFS during adsorption on Fe(oxyhydr) oxides[J]. Environmental Science & Technology, 2023, 57(25): 9353−9361. doi: 10.1021/acs.est.3c01906
    [18]
    Hei E, He M, Zhang E, et al. Risk assessment of antimony-arsenic contaminated soil remediated using zero-valent iron at different pH values combined with freeze-thaw cycles[J]. Environmental Monitoring and Assessment, 2024, 196(5): 1−17. doi: 10.1007/s10661-024-12601-6
    [19]
    Peng L, Wang N, Xiao T, et al. A critical review on adsorptive removal of antimony from waters: Adsorbent species, interface behavior and interaction mechanism[J]. Chemosphere, 2023: 138529.
    [20]
    Sun Q, Liu C, Alves M E, et al. The oxidation and sorption mechanism of Sb on δ-MnO2[J]. Chemical Engineering Journal, 2018, 342: 429−437. doi: 10.1016/j.cej.2018.02.091
    [21]
    Nie J, Yao Z, Shao P, et al. Revisiting the adsorption of antimony on manganese dioxide: The overlooked dissolution of manganese[J]. Chemical Engineering Journal, 2022, 429: 132468. doi: 10.1016/j.cej.2021.132468
    [22]
    Wu Y, Sun G, Huang J H, et al. Antimony isotopic fractionation during intensive chemical weathering of basalt in the tropics[J]. Geochimica et Cosmochimica Acta, 2024, 367: 29−40. doi: 10.1016/j.gca.2023.12.029
    [23]
    Zhou W, Zhou A, Wen B, et al. Antimony isotope fractionation during adsorption on aluminum oxides[J]. Journal of Hazardous Materials, 2022, 429: 128317. doi: 10.1016/j.jhazmat.2022.128317
    [24]
    Xi J, He M, Lin C. Adsorption of antimony(Ⅲ) and antimony(V) on bentonite: Kinetics, thermodynamics and anion competition[J]. Microchemical Journal, 2011, 97(1): 85−91. doi: 10.1016/j.microc.2010.05.017
    [25]
    Dousova B, Lhotka M, Filip J, et al. Removal of arsenate and antimonate by acid-treated Fe-rich clays[J]. Journal of Hazardous Materials, 2018, 357: 440−448. doi: 10.1016/j.jhazmat.2018.06.028
    [26]
    Zhang Y, Ding C, Gong D, et al. A review of the environmental chemical behavior, detection and treatment of antimony[J]. Environmental Technology & Innovation, 2021, 24: 102026. doi: 10.1016/j.eti.2021.102026
    [27]
    Tang H, Hassan M U, Nawaz M, et al. A review on sources of soil antimony pollution and recent progress on remediation of antimony polluted soils[J]. Ecotoxicology and Environmental Safety, 2023, 266: 115583. doi: 10.1016/j.ecoenv.2023.115583
    [28]
    Schwertmann U, Cornell R M. Iron oxides in the laboratory: Preparation and characterization[M]. John Wiley & Sons, 2008.
    [29]
    Balboni E, Smith K F, Moreau L M, et al. Transformation of ferrihydrite to goethite and the fate of plutonium[J]. ACS Earth and Space Chemistry, 2020, 4(11): 1993−2006. doi: 10.1021/acsearthspacechem.0c00195
    [30]
    崔婷, 叶欣, 朱霞萍, 等. 土壤铁锰氧化物形态测定及吸附Sb(Ⅲ)的主控因子研究[J]. 岩矿测试, 2023, 42(1): 167−176. doi: 10.15898/j.cnki.11-2131/td.202111250187

    Cui T, Ye X, Zhu X P, et al. Determination of various forms of iron and manganese oxides and the main controlling factors of absorption of Sb(Ⅲ) in soil[J]. Rock and Mineral Analysis, 2023, 42(1): 167−176. doi: 10.15898/j.cnki.11-2131/td.202111250187
    [31]
    Wang X, He M, Lin C, et al. Antimony(Ⅲ) oxidation and antimony(V) adsorption reactions on synthetic manganite[J]. Geochemistry, 2012, 72: 41−47. doi: 10.1016/j.chemer.2012.02.002
    [32]
    Sukul P, Lamshöft M, Zühlke S, et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems[J]. Chemosphere, 2008, 73(8): 1344−1350. doi: 10.1016/j.chemosphere.2008.06.066
    [33]
    Wu T, Liu C, Cui P, et al. Kinetics of coupled sorption and abiotic oxidation of antimony(Ⅲ) in soils[J]. Geoderma, 2023, 434: 116486. doi: 10.1016/j.geoderma.2023.116486
    [34]
    Liu X, Wang Y, Xiang H, et al. Unveiling the crucial role of iron mineral phase transformation in antimony(V) elimination from natural water[J]. Eco-Environment & Health, 2023, 2(3): 176−83. doi: 10.1016/j.eehl.2023.07.006
    [35]
    Mukhopadhyay R, Sarkar B, Barman A, et al. Arsenic adsorption on modified clay minerals in contaminated soil and water: Impact of pH and competitive anions[J]. Clean-Soil, Air, Water, 2021, 49(4): 2000259. doi: 10.1002/clen.202000259
    [36]
    Li Y, Liu J, Wang Y, et al. Contribution of components in natural soil to Cd and Pb competitive adsorption: Semi-quantitative to quantitative analysis[J]. Journal of Hazardous Materials, 2023, 441: 129883. doi: 10.1016/j.jhazmat.2022.129883
    [37]
    Yan L, Chan T, Jing C. Mechanistic study for antimony adsorption and precipitation on hematite facets[J]. Environmental Science & Technology, 2022, 56(5): 3138−3146. doi: 10.1021/acs.est.1c07801
    [38]
    随志磊. 极端条件下几种稀土盐和氧化锑的相变和发光研究[D]. 合肥: 中国科学技术大学, 2017: 10−50.

    Sui Z L. Studies on phase transitions and photo-luminescence of several rare earth sands and antimony trioxide in extreme conditions[D]. Hefei: University of Science and Technology of China, 2017: 10−50.
    [39]
    Pereira A L J, Gracia L, Santamaría-Pérez D, et al. Structural and vibrational study of cubic Sb2O3 under high pressure[J]. Physical Review B, 2012, 85(17): 174108. doi: 10.1103/PhysRevB.85.174108
    [40]
    Abrashev M V, Ivanov V G, Stefanov B S, et al. Raman spectroscopy of alpha-FeOOH (goethite) near antiferromagnetic to paramagnetic phase transition[J]. Journal of Applied Physics, 2020, 127(20): 205108.
    [41]
    de Faria D L A, Lopes F N. Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them?[J]. Vibrational Spectroscopy, 2007, 45(2): 117−121. doi: 10.1016/j.vibspec.2007.07.003
    [42]
    Chistyakova N, Antonova A, Elizarov I, et al. Mössbauer, nuclear forward scattering, and Raman spectroscopic approaches in the investigation of bioinduced transformations of mixed-valence antimony oxide[J]. The Journal of Physical Chemistry A, 2021, 125(1): 139−145. doi: 10.1021/acs.jpca.0c08865
    [43]
    Frost R L, Bahfenne S. Raman spectroscopic study of the antimonate mineral brizziite NaSbO3[J]. Radiation Effects and Defects in Solids, 2010, 165(3): 206−210. doi: 10.1080/10420150903513046
    [44]
    Zahn D R T. Vibrational spectroscopy of bulk and supported manganese oxides[J]. Physical Chemistry Chemical Physics, 1999, 1(1): 185−190. doi: 10.1039/A807821A
    [45]
    Julien C, Massot M, Rangan S, et al. Study of structural defects in γ-MnO2 by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2002, 33(4): 223−228. doi: 10.1002/jrs.838
    [46]
    Shim S H, Duffy T S. Raman spectroscopy of Fe2O3 to 62GPa[J]. American Mineralogist, 2002, 87(2−3): 318−326. doi: 10.2138/am-2002-2-314
    [47]
    Marshall C P, Dufresne W J B. Resonance Raman and polarized Raman scattering of single-crystal hematite[J]. Journal of Raman Spectroscopy, 2022, 53(5): 947−955. doi: 10.1002/jrs.6309
    [48]
    Basu A, Mookherjee M, Clapp S, et al. High-pressure Raman scattering and X-ray diffraction study of kaolinite, Al2Si2O5(OH)4[J]. Applied Clay Science, 2023, 245: 107144.
    [49]
    Frost R L, Fredericks P M, Kloprogge J T, et al. Raman spectroscopy of kaolinites using different excitation wavelengths[J]. Journal of Raman Spectroscopy, 2001, 32(8): 657−663. doi: 10.1002/jrs.722
    [50]
    Delbé K, de Sousa C, Grizet F, et al. Determination of the pressure dependence of Raman mode for an alumina-glass pair in hertzian contact[J]. Materials, 2022, 15(23): 8645. doi: 10.3390/ma15238645
    [51]
    Misra A, Bist H D, Navati M S, et al. Thin film of aluminum oxide through pulsed laser deposition: A micro-Raman study[J]. Materials Science and Engineering B, 2001, 79(1): 49−54. doi: 10.1016/S0921-5107(00)00554-7
  • Related Articles

    [1]ZHU Wei, XU Wenjing, SHEN Aiguo. Analysis of Micro-Fine Mineral Pigments Based on Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2025, 44(2): 189-200. DOI: 10.15898/j.ykcs.202403260068
    [2]ZHANG Yongqing, ZHOU Hongying, GENG Jianzhen, XIAO Zhibin, TU Jiarun, ZHANG Ran, YE Lijuan. Identification of TiO2 Polymorphs of the Bauxite Deposit in Central Guangxi by Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2022, 41(6): 978-986. DOI: 10.15898/j.cnki.11-2131/td.202112070196
    [3]NING Pei-ying, ZHANG Tian-yang, MA Hong, XIE Jun, DING Ting, LI Hui-huang, LIANG Rong. Characterization of Hydrous Mineral Inclusions in Ruby and Sapphire by Infrared Spectroscopy and Microscopic Confocal Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(6): 640-648. DOI: 10.15898/j.cnki.11-2131/td.201903050033
    [4]Wen-qing HUANG, Xu-guang JIN, Rui ZUO, Dong-juan CHAO, Gui-qun YANG, Pan XUE, Xiao-jun CHEN, Jin-wen ZHANG. Identification Characteristics of Natural and Synthetic Amethyst by Infrared and Polarized Raman Spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(4): 403-410. DOI: 10.15898/j.cnki.11-2131/td.201807230087
    [5]Zhao-xi ZUO, Shang-bin CHEN, Qian SHI, Yu-fu HAN. Application of Laser Raman Spectroscopy to the Evaluation of the High-and Overhigh-maturity of Shale and Coal[J]. Rock and Mineral Analysis, 2016, 35(2): 193-198. DOI: 10.15898/j.cnki.11-2131/td.2016.02.012
    [6]Dan-yi ZHOU, Hua CHEN, Tai-jin LU, Jie KE, Ming-yue HE. Study on the Relationship between the Relative Content of Moganite and the Crystallinity of Quartzite Jade by Raman Scattering Spectroscopy, Infrared Absorption Spectroscopy and X-ray Diffraction Techniques[J]. Rock and Mineral Analysis, 2015, 34(6): 652-658. DOI: 10.15898/j.cnki.11-2131/td.2015.06.008
    [7]Jia-le HE, Zhong-xi PAN, Jing RAN. Research Progress on the Application of Laser Raman Spectroscopy in Single Fluid Inclusions[J]. Rock and Mineral Analysis, 2015, 34(4): 383-391. DOI: 10.15898/j.cnki.11-2131/td.2015.04.002
    [8]Zhi-hai WANG, Mei-fang YE, Hui DONG, Hui-bo ZHAO, Yi WANG. Determining Salinity of Fluid Inclusions by Cryogenic Raman Spectroscopy[J]. Rock and Mineral Analysis, 2014, 33(6): 813-821. DOI: 10.15898/j.cnki.11-2131/td.2014.06.009
    [9]XIA Ning, LIU Chang-ling, YE Yu-guang, MENG Qing-guo, LIN Xue-hui, HE Xing-liang. Study on Determination Method of Natural Gas Hydrates by Micro-Laser Raman Spectroscopy[J]. Rock and Mineral Analysis, 2011, 30(4): 416-422.
    [10]Advance in Low Temperature Phase Transition and Raman Spectrum Technique in Composition Determination of Fluid Inclusions[J]. Rock and Mineral Analysis, 2008, 27(3): 207-210.

Catalog

    Article views (143) PDF downloads (38) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return