Citation: | LI Zhaoying,ZHENG Lu,ZHENG Zhizhuo,et al. Method Optimization for the Determination of Soil Organic Carbon and Its Components by Automatic Titrator[J]. Rock and Mineral Analysis,2024,43(4):632−640. DOI: 10.15898/j.ykcs.202404210092 |
The rapid and accurate detection of soil organic carbon and its components (such as particulate organic carbon and mineral-associated organic carbon) is of great significance because they are the key indicators reflecting soil quality. Compared with manual titration, the automatic titrator has a low work intensity and accurate detection, but its detection efficiency is less than 30% of that of manual titration. To solve this problem, the influence of the addition amount of four oxidants on the determination of organic carbon was explored, and the effect of pre-adding titrant in advance on the improvement of detection efficiency was studied. Finally, the optimal addition amount of oxidant was 2mL, and the amount of the pre-added titrant was one-third of the titration amount of the blank sample. An automatic titrator method for the determination of soil organic carbon was established. This method was verified by using soil samples with different levels of organic carbon and reference substances and was compared with manual titration. The results showed that there was no significant difference between the automatic titrator and the manual titration. The relative standard deviation (RSD,
[1] |
武振丹, 马尚飞, 卢俊艳, 等. 贝加尔针茅草甸草原土壤有机碳组分对长期氮素添加的响应[J]. 土壤学报, 2023, 60(5): 1520−1530. doi: 10.11766/trxb202204230204
Wu Z D, Ma S F, Lu J Y, et al. Responses of soil organic carbon components to long-term nitrogen addition in the Stipa Baicalensis madow steppe[J]. Acta Pedologica Sinica, 2023, 60(5): 1520−1530. doi: 10.11766/trxb202204230204
|
[2] |
赵元, 张伟, 胡培雷, 等. 桂西北喀斯特峰丛洼地不同植被恢复方式下土壤有机碳组分变化特征[J]. 生态学报, 2021, 41(21): 8535−8544. doi: 10.5846/stxb202101140151
Zhao Y, Zhang W, Hu P L, et al. Responses of soil organic carbon fractions to different vegetation restoration in a typical karst depression[J]. Acta Ecologica Sinica, 2021, 41(21): 8535−8544. doi: 10.5846/stxb202101140151
|
[3] |
张方方, 岳善超, 李世清. 土壤有机碳组分化学测定方法及碳指数研究进展[J]. 农业环境科学学报, 2021, 40(2): 252−259. doi: 10.11654/jaes.2020-0886
Zhang F F, Yue S C, Li S Q. Chemical methods to determine soil organic carbon fractions and carbon indexes: A reviews[J]. Journal of Agro-Environment Science, 2021, 40(2): 252−259. doi: 10.11654/jaes.2020-0886
|
[4] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
Bao S D. Methods of soil agricultural analysis[M]. Beijing: China Agricultural Publishing House, 2000.
|
[5] |
李朝英, 郑路. 土壤颗粒粒径及进样量对TOC含量测定精度的影响[J]. 上海农业学报, 2018, 34(5): 8−13. doi: 10.15955/j.issn1000-3924.2018.05.02
Li Z Y, Zheng L. Effects of soil particle size and sample size on the determination accuracy of TOC content[J]. Acta Agriculturae Shanghai, 2018, 34(5): 8−13. doi: 10.15955/j.issn1000-3924.2018.05.02
|
[6] |
陈宗定, 许春雪, 安子怡, 等. 土壤碳赋存形态及分析方法研究进展[J]. 岩矿测试, 2019, 38(2): 233−244. doi: 10.15898/j.cnki.11-2131/td.201709270148
Chen Z D, Xu C X, An Z Y, et al. Research progress on fraction and analysis methods of soil carbon[J]. Rock and Mineral Analysis, 2019, 38(2): 233−244. doi: 10.15898/j.cnki.11-2131/td.201709270148
|
[7] |
许智超, 孙玮琳, 王晓芳, 等. 沉积岩中总有机碳测定的自动预处理方法[J]. 岩矿测试, 2023, 42(6): 1230−1239. doi: 10.15898/j.ykcs.202208240157
Xu Z C, Sun W L, Wang X F, et al. Automatic pretreatment methods for determination of total organic carbon in sedimentary rocks[J]. Rock and Mineral Analysis, 2023, 42(6): 1230−1239. doi: 10.15898/j.ykcs.202208240157
|
[8] |
王攀磊, 秦凤琴, 蔡培, 等. 华北半湿润地区土壤酸化和有机碳测定方法的比较[J]. 土壤通报, 2014, 45(4): 863−870. doi: 10.19336/j.cnki.trtb.2014.04.016
Wang P L, Qin F Q, Cai P, et al. Comparison of acidification and soil organic carbon determination for semihumid soils in North China[J]. Chinese Journal of Soil Science, 2014, 45(4): 863−870. doi: 10.19336/j.cnki.trtb.2014.04.016
|
[9] |
谢娟, 张心昱, 王秋凤, 等. 燃烧法与化学氧化法测定不同pH土壤有机碳之比较[J]. 土壤通报, 2013, 44(2): 333−337. doi: 10.19336/j.cnki.trtb.2013.02.012
Xie J, Zhang X Y, Wang Q F. et al. Comparative determination of soil organic carbon with different pH using combustion method and chemical oxidation method[J]. Chinese Journal of Soil Science, 2013, 44(2): 333−337. doi: 10.19336/j.cnki.trtb.2013.02.012
|
[10] |
陆永欢, 戴全厚, 姚一文, 等. 工程堆积体植被类型对土壤有机碳组分特征及影响因素研究[J]. 水土保持学报, 2022, 36(6): 316−322. doi: 10.13870/j.cnki.stbcxb.2022.06.038
Lu Y H, Dai Q H, Yao Y W, et al. Effects of vegetation types on soil organic carbon components characteristics and its influencing factors in engineering deposits[J]. Journal of Soil and Water Conservation, 2022, 36(6): 316−322. doi: 10.13870/j.cnki.stbcxb.2022.06.038
|
[11] |
王梦雅, 符云鹏, 黄婷婷, 等. 等碳量添加不同有机物料对土壤有机碳组分及土壤呼吸的影响[J]. 中国烟草学报, 2018, 24(2): 65−73. doi: 10.16472/j.chinatobacco.2017.331
Wang M Y, Fu Y P, Huang T T, et al. Effects of organic material application on organic carbon in and respiration of soil[J]. Acta Tabacaria Sinica, 2018, 24(2): 65−73. doi: 10.16472/j.chinatobacco.2017.331
|
[12] |
李传福, 朱桃川, 明玉飞, 等. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878−888. doi: 10.16258/j.cnki.1674-5906.2023.05.006
Li C F, Zhu T C, Ming Y F, et al. Effect of organic fertilizer and desulphurized gypsum on soil aggregates and organic carbon and its fractions contents in the saline-alkali soil of the Yellow River Delta[J]. Ecology and Environment Sinences, 2023, 32(5): 878−888. doi: 10.16258/j.cnki.1674-5906.2023.05.006
|
[13] |
于雯泉, 钟少军. 海洋沉积物有机碳分析方法中干燥预处理过程人为误差的发现及其意义[J]. 环境科学学报, 2007, 27(5): 861−867. doi: 10.3321/j.issn:0253-2468.2007.05.025
Yu W Q, Zhong S J. Freeze-drying pretreatment improves organic carbon determinations of marine sediments[J]. Acta Scientiae Circumstantiae Stantiae, 2007, 27(5): 861−867. doi: 10.3321/j.issn:0253-2468.2007.05.025
|
[14] |
井玉丹, 王家嘉, 裴欢, 等. 烘箱加热法测定土壤有机质的改进研究[J]. 中国土壤与肥料, 2023(10): 245−250. doi: 10.11838/sfsc.1673-6257.22615
Jing Y D, Wang J J, Pei H, et al. Improvement of oven heating method for determination of soil organic matter[J]. Soil Fertilizer Sciences in China, 2023(10): 245−250. doi: 10.11838/sfsc.1673-6257.22615
|
[15] |
郝国辉, 邵劲松. 土壤有机质含量测定方法的改进研究[J]. 农业资源与环境学报, 2014, 31(2): 202−204. doi: 10.13254/j.jare.2014.0007
Hao G H, Shao J S. Improvement research on the measurement method for organic matter content in soil[J]. Journal of Agricultural Resources and Environment, 2014, 31(2): 202−204. doi: 10.13254/j.jare.2014.0007
|
[16] |
刘昌岭, 朱志刚, 贺行良, 等. 重铬酸钾氧化-硫酸亚铁滴定法快速测定海洋沉积物中有机碳[J]. 岩矿测试, 2007, 26(3): 205−208. doi: 10.3969/j.issn.0254-5357.2007.03.008
Liu C L, Zhu Z G, He X L, et al. Rapid determination of organic carbon in marine sediment samples by potassium dichromate oxidation-ferrous sulphate titrimetry[J]. Rock and Mineral Analysis, 2007, 26(3): 205−208. doi: 10.3969/j.issn.0254-5357.2007.03.008
|
[17] |
孙晗杰, 李铁刚, 于心科. 自动电位滴定仪测定海洋沉积物中碳酸盐百分含量[J]. 海洋地质与第四纪地质, 2012, 32(5): 157−162. doi: 10.3724/SP.J.1140.2012.05157
Sun H J, Li T G, Yu X K. The determination of carbonate content in marine sediments by automatic potentiometric titrator[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 157−162. doi: 10.3724/SP.J.1140.2012.05157
|
[18] |
赵文杰, 马明, 张珂, 等. 自动电位滴定仪应用于地下水六项指标的连续滴定[J]. 岩矿测试, 2018, 37(5): 580−585. doi: 10.15898/j.cnki.11-2131/td.201711060176
Zhao W J, Ma M, Zhang K, et al. Application of automatic potentiometric titrator in continuous titration of six indices in groundwater[J]. Rock and Mineral Analysis, 2018, 37(5): 580−585. doi: 10.15898/j.cnki.11-2131/td.201711060176
|
[19] |
王兵, 高丰蕾, 杨佩华, 等. 自动电位滴定仪应用于测定海洋沉积物中有机碳的可行性研究[J]. 岩矿测试, 2016, 35(4): 402−408. doi: 10.15898/j.cnki.11-2131/td.2016.04.011
Wang B, Gao F L, Yang P H, et al. Feasibility study on the application of automatic potentiometric titrator in the measurement of organic carbon in marine sediments[J]. Rock and Mineral Analysis, 2016, 35(4): 402−408. doi: 10.15898/j.cnki.11-2131/td.2016.04.011
|
[20] |
郝会军, 杨俐苹, 金健运. 自动电位滴定法测定土壤有机质含量[J]. 中国土壤与肥料, 2011(1): 83−87. doi: 10.3969/j.issn.1673-6257.2011.01.019
Hao H J, Yang L P, Jin J Y. Determination of soil organic matter by automatically potentiometric titration method[J]. Soils and Fertilizers Sciences in China, 2011(1): 83−87. doi: 10.3969/j.issn.1673-6257.2011.01.019
|
[21] |
杨娥女, 王宝荣, 姚宏佳, 等. 黄土高原生物土壤结皮发育过程中颗粒态和矿物结合态有机碳变化特征[J]. 水土保持研究, 2023, 30(1): 25−33, 40. doi: 10.13869/j.cnki.rswc.20220427.001
Yang E N, Wang B R, Yao H J, et al. Dynamics of particulate and mineral-associated organic carbon during the development of biological soil crusts in the Loess Plateau[J]. Research of Soil and Water Conservation, 2023, 30(1): 25−33, 40. doi: 10.13869/j.cnki.rswc.20220427.001
|
[22] |
张睿博, 汪金松, 王全成, 等. 土壤颗粒态有机碳与矿物结合态有机碳对气候变暖响应的研究进展[J]. 地理科学进展, 2023(12): 2471−2484. doi: 10.18306/dlkxjz.2023.12.015
Zhang R B, Wang J S, Wang Q C. et al. Responses of soil particulate and mineral associated organic carbon to climate warming: A review[J]. Progress in Geography, 2023(12): 2471−2484. doi: 10.18306/dlkxjz.2023.12.015
|
[23] |
徐嘉晖, 高雷, 孙颖, 等. 大兴安岭森林土壤矿物结合态有机碳与黑碳的分布及土壤固碳潜力[J]. 土壤学报, 2018, 55(1): 236−246. doi: 10.11766/trxb201708080194
Xu J H, Gao L, Sun Y, et al. Distribution of mineral-bonded organic carbon and black carbon in forest soils of Great Xing’an Mountains, China and carbon sequestration potential of the soils[J]. Acta Pedological Sinica, 2018, 55(1): 236−246. doi: 10.11766/trxb201708080194
|