• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
TU Jiarun,ZHOU Hongying,CUI Yurong,et al. A High-Precision ID-TIMS U-Pb Dating Method of Apatite[J]. Rock and Mineral Analysis,2024,43(4):533−545. DOI: 10.15898/j.ykcs.202404170087
Citation: TU Jiarun,ZHOU Hongying,CUI Yurong,et al. A High-Precision ID-TIMS U-Pb Dating Method of Apatite[J]. Rock and Mineral Analysis,2024,43(4):533−545. DOI: 10.15898/j.ykcs.202404170087

A High-Precision ID-TIMS U-Pb Dating Method of Apatite

More Information
  • Received Date: April 16, 2024
  • Revised Date: May 29, 2024
  • Accepted Date: June 05, 2024
  • Available Online: August 08, 2024
  • Apatite belongs to the hexagonal crystal system and has a relatively high (350-550℃) closure temperature, which can accommodate multiple element substitutions into the crystal lattice. It is an important dating mineral for the study of igneous rocks, sedimentary rocks, metamorphic rocks and ore deposits. However, due to the low uranium content and high common lead content of apatite, accurate age determination remains a major challenge for current U-Pb dating techniques. Based on the 208Pb-235U mixed spike, a high-precision isotope dilution-thermal ionization mass spectrometry (ID-TIMS) U-Pb dating method of apatite was established by optimizing the chemical pre-treatment process of sample cleaning, dissolution, and column chromatography separation and purification of U and Pb. The proposed method accurately determined the ages of apatite MAD2 and MAP-3, with 206Pb/238U weighted average ages of 474.6±1.7Ma and 800.7±1.2Ma, respectively. The precision of single-point analysis was better than 0.4%, providing technical support for accurately and precisely dating apatite and development of apatite standards. Moreover, taking MAP-3 as a calibration standard, LA-ICP-MS U-Pb dating was performed on apatite in Durango and Otter Lake, resulting in lower intercept ages of 32.1±0.6Ma (MSWD=1.3, n=36) and 910±13Ma (MSWD=1.6, n=36) in a Tera-Wasserburg diagram, which were consistent with the previous research results within error. This gives further evidence that MAP-3, with extremely low common lead content, is an ideal apatite in situ U-Pb dating standard. Compared with high common lead apatite standards, MAP-3 as an external standard can directly calibrate the isotopic data, effectively simplifying the data analysis process and improving the reliability of in situ apatite U-Pb dating results.

  • [1]
    李华伟, 杨志明. 岩浆锆石和磷灰石矿物化学及在斑岩矿床领域的应用[J]. 地质学报, 2023, 97(4): 973−1001. doi: 10.3969/j.issn.0001-5717.2023.04.002

    Li H W, Yang Z M. Geochemistry of magmatic zircon and apatite and its applications in porphyry deposits[J]. Acta Geologica Sinica, 2023, 97(4): 973−1001. doi: 10.3969/j.issn.0001-5717.2023.04.002
    [2]
    赵振华, 严爽. 矿物——成矿与找矿[J]. 岩石学报, 2019, 35(1): 31−68. doi: 10.18654/1000-0569/2019.01.03

    Zhao Z H, Yan S. Minerals and relevant metallogeny and exploration[J]. Acta Petrologica Sinica, 2019, 35(1): 31−68. doi: 10.18654/1000-0569/2019.01.03
    [3]
    孙晓旭, 冯坚, 李超, 等. 自动矿物识别和表征系统在辽东吉祥峪稀土矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2023, 42(6): 1120−1131. doi: 10.15898/j.ykcs.202203270061

    Sun X X, Feng J, Li C, et al. Application of automated mineral identification and characterization system to identify minerals and occurrences of elements in Jixiangyu rare earth deposit of Eastern Liaoning[J]. Rock and Mineral Analysis, 2023, 42(6): 1120−1131. doi: 10.15898/j.ykcs.202203270061
    [4]
    Danisik M, Pfaff K, Evans N J, et al. Tectonothermal history of the Schwarzwald ore district (Germany): An apatite triple dating approach[J]. Chemical Geology, 2010, 278(1/2): 58−69.
    [5]
    David M C, Spiking R A. Geochronology and thermochronology using apatite: Time and temperature, lower crust to surface[J]. Elements, 2015, 11(3): 189−194. doi: 10.2113/gselements.11.3.189
    [6]
    Jian X, Guan P, Zhang W, et al. Late Cretaceous to early Eocene deformation in the Northern Tibetan Plateau: Detrital apatite fission track evidence from Northern Qaidam Basin[J]. Gondwana Research, 2018, 60: 94−104. doi: 10.1016/j.gr.2018.04.007
    [7]
    付山岭, 赵成海. 原位U-Th/He同位素定年技术研究进展及其低温矿床学应用前景[J]. 岩矿测试, 2017, 36(1): 1−13. doi: 10.15898/j.cnki.11-2131/td.2017.01.002

    Fu S L, Zhao C H. Progress of in situ U-Th/He isotopic dating technique and its application to low temperature deposits[J]. Rock and Mineral Analysis, 2017, 36(1): 1−13. doi: 10.15898/j.cnki.11-2131/td.2017.01.002
    [8]
    梅清风, 杨进辉, 孙金凤, 等. Acasta片麻杂岩多期次热事件: 来自锆石、榍石和磷灰石的原位微区年代学证据[J]. 中国科学: 地球科学, 2024, 67(3): 673−686.

    Mei Q F, Yang J H, Sun J F, et al. Multiple thermal events recorded in the Acasta Gneiss Complex: Evidence from in-situ dating of zircon, titanite, and apatite[J]. Science China Earth Sciences, 2024, 67(3): 673−686.
    [9]
    祝亚男, 彭建堂, 邢朗彰, 等. 湘西沃溪金锑钨矿床白钨矿、黑钨矿与磷灰石U-Pb定年及其地质意义[J]. 岩石学报, 2023, 39(6): 1829−1846. doi: 10.18654/1000-0569/2023.06.15

    Zhu Y N, Peng J T, Xing L Z, et al. U-Pb dating of scheelite, wolframite and apatite from the Woxi Au-Sb-W deposit, Western Hunan Province and their geological significance[J]. Acta Petrologica Sinica, 2023, 39(6): 1829−1846. doi: 10.18654/1000-0569/2023.06.15
    [10]
    Chew D M, Spikings R A. Apatite U-Pb thermochronology: Review[J]. Minerals, 2021, 11(10): 1095−1116. doi: 10.3390/min11101095
    [11]
    Chen W, Simonetti A. In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history[J]. Chemical Geology, 2013, 353(5): 151−172.
    [12]
    Cherniak D J, Lanford W A, Ryerson F. Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques[J]. Geochimica et Cosmochimica Acta, 1991, 55(6): 1663−1673. doi: 10.1016/0016-7037(91)90137-T
    [13]
    赵令浩, 詹秀春, 曾令森, 等. 磷灰石 LA-ICP-MS U-Pb 定年直接校准方法研究[J]. 岩矿测试, 2022, 41(5): 744−753. doi: 10.15898/j.cnki.11-2131/td.202202260035

    Zhao L H, Zhan X C, Zeng L S, et al. Direct calibration method for LA-HR-ICP-MS apatite U-Pb dating[J]. Rock and Mineral Analysis, 2022, 41(5): 744−753. doi: 10.15898/j.cnki.11-2131/td.202202260035
    [14]
    Chew D M, Petrus J A, Kamber B S. U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb[J]. Chemical Geology, 2014, 363: 185−199. doi: 10.1016/j.chemgeo.2013.11.006
    [15]
    Thomson S N, Gehrels G E, Ruiz J, et al. Routine low-damage apatite U-Pb dating using laser ablation-multicollector-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(2): Q0AA21.
    [16]
    周红英, 刘敦一, Nemchim A, 等. 鞍山地区 3.8Ga变质石英闪长岩遭受3.0Ga构造事 件叠加——来自磷灰石SHRIMP U-Th-Pb定年证据[J]. 地质论评, 2007, 53(1): 120−125. doi: 10.3321/j.issn:0371-5736.2007.01.016

    Zhou H Y, Liu D Y, Nemchim A, et al. 3.0Ga thermo-tectonic events suffered by the 3.8Ga Meta-quartz-diorite in the Anshan area: Constraints from Apatite SHRIMP U-Th-Pb dating[J]. Geological Review, 2007, 53(1): 120−125. doi: 10.3321/j.issn:0371-5736.2007.01.016
    [17]
    Chew D M, Sylvester P J, Tubrett M N. U-Pb and Th-Pb dating of apatite by LA-ICPMS[J]. Chemical Geology, 2011, 280(1): 200−216.
    [18]
    Li Q L, Li X H, Wu F Y, et al. In-situ SIMS U-Pb dating of phanerozoic apatite with low U and high common Pb[J]. Gondwana Research, 2012, 21: 745−756. doi: 10.1016/j.gr.2011.07.008
    [19]
    许雅雯, 李惠民, 王家松, 等. U-Pb同位素测年新方法——激光烧蚀等离子体质谱法直接测定探针片中锆石和磷灰石年龄[J]. 地质调查与研究, 2015, 38(1): 67−76.

    Xu Y W, Li H M, Wang J S, et al. A new method of U-Pb isotopic dating: In polished thin section U-Pb dating of zircon, apatite using laser ablation-MC-ICP-MS[J]. Geological Survey and Research, 2015, 38(1): 67−76.
    [20]
    Wohlgemuth-Ueberwasser C, Tegner C, Pease V. LA-Q-ICP-MS apatite U/Pb geochronology using common Pb in plagioclase: Examples from layered mafic intrusions[J]. American Mineralogist, 2017, 102: 571−579. doi: 10.2138/am-2017-5903
    [21]
    Fisher C M, Bauer A M, Luo Y, et al. Laser ablation split-stream analysis of the Sm-Nd and U-Pb isotope compositions of monazite, titanite, and apatite—Improvements, potential reference materials, and application to the Archean Saglek Block gneisses[J]. Chemical Geology, 2020, 539: 119493. doi: 10.1016/j.chemgeo.2020.119493
    [22]
    刘敏, 宋世伟, 崔玉荣, 等. 赣东北朱溪矿床深部似层状钨(铜)矿体白钨矿、磷灰石原位U-Pb年代学及微量元素研究[J]. 岩石学报, 2021, 37(3): 717−732. doi: 10.18654/1000-0569/2021.03.05

    Liu M, Song S W, Cui Y R, et al. In-situ U-Pb geochronology and trace element analysis for the scheelite and apatite from the deep seated stratiform-like W(Cu) ore of the Zhuxi tungsten deposit, Northeastern Jiangxi Province[J]. Acta Petrologica Sinica, 2021, 37(3): 717−732. doi: 10.18654/1000-0569/2021.03.05
    [23]
    张妍, 包志安, 陈开运, 等. LA-ICP-MS磷灰石-榍石U-Pb定年测试[J]. 西北大学学报(自然科学版), 2023, 53(6): 1030−1040.

    Zhang Y, Bao Z A, Chen K Y, et al. In situ U-Pb dating of apatite-titanite by LA-ICP-MS[J]. Journal of Northwest University (Natural Science Edition), 2023, 53(6): 1030−1040.
    [24]
    Thompson J, Meffre S, Maas R, et al. Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite[J]. Journal of Analytical Atomic Spectrometry, 2016, 31: 1206−1215. doi: 10.1039/C6JA00048G
    [25]
    Krestianinov E, Amelin Y, Neymark L A, et al. U-Pb systematics of uranium-rich apatite from Adirondacks: Inferences about regional geological and geochemical evolution, and evaluation of apatite reference materials for in situ dating[J]. Chemical Geology, 2021, 581: 120417. doi: 10.1016/j.chemgeo.2021.120417
    [26]
    Paul A N, Spikings R A, Gaynor S P. U-Pb ID-TIMS reference ages and initial Pb isotope compositions for Durango and Wilberforce apatites[J]. Chemical Geology, 2021, 586: 120604. doi: 10.1016/j.chemgeo.2021.120604
    [27]
    Apen F E, Wall C J, Cottle J M, et al. Apatites for destruction: Reference apatites from Morocco and Brazil for U-Pb petrochronology and Nd and Sr isotope geochemistry[J]. Chemical Geology, 2022, 590: 120689. doi: 10.1016/j.chemgeo.2021.120689
    [28]
    Lana C, Gonçalves G O, Mazoz A, et al. Assessing the U-Pb, Sm-Nd and Sr-Sr isotopic compositions of the sume apatite as a reference material for LA-ICP-MS analysis[J]. Geostandards and Geoanalytical Research, 2022, 46: 71−95. doi: 10.1111/ggr.12413
    [29]
    Duan L J, Zhang L L, Zhu D C, et al. MAP-2 apatite: A new young age reference material for U-Pb dating with LA-ICPMS analysis[J]. International Journal of Mass Spectrometry, 2023, 493: 117121. doi: 10.1016/j.ijms.2023.117121
    [30]
    Duan L J, Zhang L L, Zhu D C, et al. Apatite MAP-3: A new homogeneous and low common lead natural reference for laser in situ U-Pb dating and Nd isotope analysis[J]. Journal of Analytical Atomic Spectrometry, 2023, 38: 1478−1493. doi: 10.1039/D2JA00405D
    [31]
    周红英, 耿建珍, 崔玉荣, 等. 磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年[J]. 地球学报, 2012, 33(6): 857−864. doi: 10.3975/cagsb.2012.06.03

    Zhou H Y, Geng J Z, Cui Y R, et al. In situ U-Pb dating of apatite using LA-MC-ICP-MS[J]. Acta Geoscientica Sinica, 2012, 33(6): 857−864. doi: 10.3975/cagsb.2012.06.03
    [32]
    周红英, 李怀坤, 张健, 等. 新太古代花岗片麻岩中麻粒岩包体磷灰石U-Pb定年对燕辽裂陷槽中元古代长城群底界年龄的制约[J]. 地质调查与研究, 2020, 43(2): 81−88.

    Zhou H Y, Li H K, Zhang J, et al. U-Pb dating of apatite from the granulite xenoliths in the Neoarchaean granitic gneiss: Constraints on the base age of the Mesoproterozoic Changchengian Group in the Yanliao Aulacogen, Northern North China Craton[J]. Geological Survey and Research, 2020, 43(2): 81−88.
    [33]
    周红英, 李惠民. 金红石 U-Pb 同位素稀释法定年技术的改进[J]. 岩石矿物学杂志, 2008, 27(1): 77−80. doi: 10.3969/j.issn.1000-6524.2008.01.011

    Zhou H Y, Li H M. The improvement of the rutile isotope dilution U-Pb dating methodology[J]. Acta Petrologica et Mineralogiga, 2008, 27(1): 77−80. doi: 10.3969/j.issn.1000-6524.2008.01.011
    [34]
    陆松年, 李惠民. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年[J]. 中国地质科学院院报, 1991, 22: 137−146.

    Lu S N, Li H M. A precise U-Pb single zircon age determination for the volcanice of Dahongyu Formation Changcheng system in Jixian[J]. Bulletin of the Chinese Academy of Geological Sciences, 1991, 22: 137−146.
    [35]
    涂家润, 肖志斌, 曲凯, 等. 氟碳铈矿U-Pb定年技术研究[J]. 地球学报, 2017, 38(6): 945−951. doi: 10.3975/cagsb.2017.06.09

    Tu J R, Xiao Z B, Qu K, et al. A study of U-Pb dating technology of bastnaesite[J]. Acta Geoscientica Sinica, 2017, 38(6): 945−951. doi: 10.3975/cagsb.2017.06.09
    [36]
    Tu J R, Xiao Z B, Zhou H Y, et al. U-Pb dating of single-grain uraninite by isotope dilution thermal ionization mass spectrometry[J]. Ore Geology Reviews, 2019, 109: 407−412. doi: 10.1016/j.oregeorev.2019.05.001
    [37]
    Zhang L, Wu J L, Tu J R, et al. RMJG Rutile: A new natural reference material for microbeam U-Pb dating and Hf isotopic analysis[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 133−145. doi: 10.1111/ggr.12304
    [38]
    涂家润, 崔玉荣, 周红英, 等. 锡石U-Pb定年方法评述[J]. 地质调查与研究, 2019, 42(4): 245−253.

    Tu J R, Cui Y R, Zhou H Y, et al. Review of U-Pb dating methods for cassiterite[J]. Geological Survey and Research, 2019, 42(4): 245−253.
    [39]
    Ludwig K R. PBDAT for MS-DOS. A computer program for IBM-PC compatibles for processing raw Pb-U-Th isotope data, version 1.00a[J]. United States Geological Survey Open-File Report, 1988, 88-542: 1−37.
    [40]
    Ludwig K R. User’s manual for Isoplot/Ex (Version 2.2): A geochronological toolkit for microsoft excel[M]. Berkely: Geochronology Center Special Publication, 2000: 1−55.
    [41]
    Jaffey A, Flynn F, Glendenin L, et al. Precision measurement of half-lives and specific activities of 235U and 238U[J]. Physical Review C, 1971, 4: 1889. doi: 10.1103/PhysRevC.4.1889
    [42]
    Hiess J, Condon D J, McLean N, et al. 238U/235U systematics in terrestrial uranium-bearing minerals[J]. Science, 2012, 335: 1610−1614. doi: 10.1126/science.1215507
    [43]
    Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51(1-2): 537−571. doi: 10.1093/petrology/egp082
    [44]
    杨亚楠, 李秋立, 刘宇, 等. 离子探针锆石U-Pb定年[J]. 地学前缘, 2014, 21(2): 81−92.

    Yang Y N, Li Q L, Liu Y, et al. Zircon U-Pb dating by secondary ion mass spectrometry[J]. Earth Science Frontiers, 2014, 21(2): 81−92.
    [45]
    Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2): 207−221. doi: 10.1016/0012-821X(75)90088-6
    [46]
    Carr P A, Zink S, Bennett V C, et al. A new method for U-Pb geochronology of cassiterite by ID-TIMS applied to the Mole Granite polymetallic system, Eastern Australia[J]. Chemical Geology, 2020, 539: 119539. doi: 10.1016/j.chemgeo.2020.119539
    [47]
    Yang M, Romer R L, Yang Y H, et al. U-Pb isotopic dating of cassiterite development of reference materials and in situ applications by LA-SF-ICP-MS[J]. Chemical Geology, 2022, 593: 120754. doi: 10.1016/j.chemgeo.2022.120754
    [48]
    Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology[J]. Geoscience Frontiers, 2016, 7(4): 581−589. doi: 10.1016/j.gsf.2015.11.006
    [49]
    郝爽, 李惠民, 李国占, 等. LA-ICP-MS 测定锡石U-Pb 同位素年龄时两种普通铅扣除方法的原理及适用性比较[J]. 地质通报, 2016, 35(4): 622−632. doi: 10.3969/j.issn.1671-2552.2016.04.019

    Hao S, Li H M, Li G Z, et al. The comparison of the principle and applicability between two methods of deducting the initial common lead for in situ LA-ICP-MS U-Pb isotope dating of cassiterite[J]. Geological Bulletin of China, 2016, 35(4): 622−632. doi: 10.3969/j.issn.1671-2552.2016.04.019
    [50]
    邓宾, 曾璐, 周庆, 等. 碎屑岩磷灰石单矿物多法定年进展与应用[J]. 地质科技情报, 2017, 36(1): 77−86.

    Deng B, Zeng L, Zhou Q, et al. A review of detrital apatite single-grain LA-ICPMS multi-dating[J]. Geological Science and Technology Information, 2017, 36(1): 77−86.
    [51]
    Neymark L A, Holm-Denoma C S, Moscati R J. In situ LA-ICPMS U-Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary[J]. Chemical Geology, 2018, 483: 410−425. doi: 10.1016/j.chemgeo.2018.03.008
  • Cited by

    Periodical cited type(1)

    1. 唐帅,刘涛,丁洋. 基于ICP-MS法的地质勘探土壤样品中铂钯金含量测定分析. 世界有色金属. 2024(19): 190-192 .

    Other cited types(0)

Catalog

    Article views (288) PDF downloads (86) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return