• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
AI Xiaojun,CHEN Zhansheng,HOU Hongxing,et al. Distribution Characteristics and Source Analysis of Soil Heavy Metals in the Liaoyang—Dandong Region[J]. Rock and Mineral Analysis,2024,43(5):755−768. DOI: 10.15898/j.ykcs.202404070080
Citation: AI Xiaojun,CHEN Zhansheng,HOU Hongxing,et al. Distribution Characteristics and Source Analysis of Soil Heavy Metals in the Liaoyang—Dandong Region[J]. Rock and Mineral Analysis,2024,43(5):755−768. DOI: 10.15898/j.ykcs.202404070080

Distribution Characteristics and Source Analysis of Soil Heavy Metals in the Liaoyang—Dandong Region

More Information
  • Received Date: April 06, 2024
  • Revised Date: August 26, 2024
  • Accepted Date: August 30, 2024
  • Available Online: September 25, 2024
  • HIGHLIGHTS
    (1) Multivariate statistical methods such as variation coefficient and enrichment factor and geospatial analysis confirm each other and reveal the distribution characteristics of heavy metal elements in soil.
    (2) Soil heavy metal pollution was evaluated by index of geoaccumulation. The surface soil was slightly polluted by Cd, Hg, Pb and Zn, the middle layer of soil was slightly polluted by Pb, and the deep soil was not polluted.
    (3) The sources of heavy metals in soil were analyzed by Pearson correlation analysis, principal component analysis and anthropogenic contribution rate, and Cd and Hg were significantly affected by anthropogenic activities.

    The Liaoyang—Dandong region is an important grain and cash crop production area in Liaoning Province. It is of great significance for monitoring the quality of black soil and studying the migration and transformation of heavy metals in soil to understand the distribution characteristics and sources of heavy metals in soil from 0 to 500cm. Soil samples were collected from different layers, and the contents of 8 heavy metal elements and Sc elements were determined. The average contents did not exceed the pollution risk screening value, Cd and Hg were obviously enriched in the surface soil, and Pb and Zn showed a certain enrichment trend. Cd, Hg, Pb and Zn in the surface soil were slightly polluted, the middle layer of soil was slightly polluted by Pb, and the deep layer of soil was not polluted. Pb, As, Co, Cu, Cr, Sc and Zn were affected mainly by natural background, Pb and Zn were affected slightly by local human factors, and Cd and Hg were affected significantly by human activities. In the future, it will be necessary to strengthen the monitoring of the enrichment trend of Hg, Cd, Pb and Zn elements in different plots. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202404070080.

    BRIEF REPORT
    Significance: The Liaoyang—Dandong area is an important grain producing area in Liaoning Province. Due to the intensive use of black land and the industrial expansion of the city, a heavy metal enrichment trend began to appear in this area, attracting professional attention. The degradation of geochemical properties of black soil often shows heavy metal toxic elements (As, Cd, Cr, Hg, Pb, Ni, etc.) exceeding the normal content in terms of trace elements. The purpose of this study was to explore the distribution characteristics of heavy metal elements in soil in the Liaoyang—Dandong area from a shallow perspective of 500cm, and analyze the sources of these heavy metal elements, to provide scientific basis for the ecological environment protection of black soil in this area.
    Methods: 1381 surface (0−20cm), 160 middle (150−250cm) and 75 deep soil samples were collected from the Liaoyang—Dandong area (Fig.1). The contents of heavy metals As, Cd, Cr, Hg, Co, Pb, Zn, Cu and Sc in soil were determined by XRF or ICP-MS/OES or AFS method (Table 1). Multivariate statistical and spatial distribution analysis methods were used to reveal the distribution characteristics of heavy metals in soil, and the geoaccumulation index, which isolates anthropogenic pollution from the total concentration determined within a sample23, was used to assess the pollution degree of different depths of soil. Pearson correlation analysis, principal component analysis (PCA) and anthropogenic contribution rate (ACR) were used to further explore the potential sources and effects of heavy metals.
    Data and results: The variation coefficient of Cd and Hg in the surface soil was greater than or equal to 0.3, and the enrichment factor was greater than 1.9, showing the enrichment rule of the surface soil (Table 2 and Fig.2). The content of heavy metals in soil at different depths varied greatly. As, Cr, Co, Sc and Cu elements were almost identical in the peak area of the topsoil with those in the lower soil, which indicated that these elements had good inheritance characteristics. However, for Cd and Hg, their spatial distribution patterns were significantly different from those of other elements (Fig.3). Pearson correlation coefficient showed that Hg correlation was weak or not correlated in all regions, and Cd was not correlated in sedimentary rocks, moraines and quaternary alluvial regions (Table 3). Hg and Cd in surface soil were greatly affected by human activities. The evaluation results of geoaccumulation index showed that the surface soil was slightly polluted by Cd, Hg, Pb and Zn as a whole, the moderate pollution points were scattered in the areas where people were concentrated and mining was active, and the middle layer of soil was slightly polluted by Pb, which was due to the increase of ion exchange Pb content caused by topsoil acidification. According to the principal component analysis of heavy metal content in the surface and middle layers of soil and the calculation of anthropogenic contribution, As, Co, Cu, Cr, Pb and Zn originated mainly from the natural background, Pb and Zn were slightly affected by local human factors, while Cd and Hg were significantly affected by anthropogenic activities (Table 4, Fig.5). In addition, As was controlled mainly by sedimentary rocks, Pb was controlled mainly by granite, and Hg was partly attributed to metamorphic rocks.
  • [1]
    黄勇, 段续川, 袁国礼. 北京市延庆区土壤重金属元素地球化学特征及其来源分析[J]. 现代地质, 2022, 36(2): 634−644. doi: 10.19657/j.geoscience.1000-8527.2022.02.24

    Huang Y, Duan X C, Yuan G L. Geochemical characteristics and sources of heavy metals in soils of Yanqing District, Beijing[J]. Geoscience, 2022, 36(2): 634−644. doi: 10.19657/j.geoscience.1000-8527.2022.02.24
    [2]
    孙凯, 孙彬彬, 周国华, 等. 福建龙海土壤重金属含量特征及影响因素研究[J]. 现代地质, 2018, 32(6): 197−205. doi: 10.19657/j.geoscience.1000-8527.2018.06.18

    Sun K, Sun B B, Zhou G H, et al. Characteristics and influencing factors of heavy metals in soils of Longhai, Fujian[J]. Geoscience, 2018, 32(6): 197−205. doi: 10.19657/j.geoscience.1000-8527.2018.06.18
    [3]
    汤金来, 赵宽, 胡睿鑫, 等. 滁州市表层土壤重金属含量特征、源解析及污染评价[J]. 环境科学, 2023, 44(6): 3562−3572.

    Tang J L, Zhao K, Hu R X, et al. Characteristics, source analysis and pollution assessment of heavy metals in surface soil of Chuzhou[J]. Environmental Science, 2023, 44(6): 3562−3572.
    [4]
    宋运红, 杨凤超, 刘凯, 等. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064−1075. doi: 10.11720/wtyht.2022.0048

    Song Y H, Yang F C, Liu K, et al. Multivariate statistical analysis of distribution characteristics and influencing factors of heavy metal elements in cultivated soil in Sanjiang Plain[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1064−1075. doi: 10.11720/wtyht.2022.0048
    [5]
    姚晓峰, 杨建锋, 左力艳, 等. 地表基质的内涵辨析与调查思路[J]. 地质通报, 2022, 41(12): 2097−2105. doi: 10.12097/j.issn.1671-2552.2022.12.002

    Yao X F, Yang J F, Zuo L Y, et al. Connotation analysis and investigation of surface matrix[J]. Geological Bulletin of China, 2022, 41(12): 2097−2105. doi: 10.12097/j.issn.1671-2552.2022.12.002
    [6]
    Yuan G L, Sun T H, Han P, et al. Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital iron & steel factory, Beijing, China[J]. Journal of Geochemical Exploration, 2013, 130(1): 15−21. doi: 10.1016/j.gexplo.2013.02.010
    [7]
    Wang A T, Wang Q, Li J, et al. Geo-statistical and multivariate analyses of potentially toxic elements’ distribution in the soil of Hainan Island (China): A comparison between the topsoil and subsoil at a regional scale[J]. Journal of Geochemical Exploration, 2019, 197: 48−59. doi: 10.1016/j.gexplo.2018.11.008
    [8]
    王诚煜, 李玉超, 于成广, 等. 葫芦岛东北部土壤重金属分布特征及来源解析[J]. 中国环境科学, 2021, 41(11): 5227−5236. doi: 10.19674/j.cnki.issn1000-6923.20210608.007

    Wang C Y, Li Y C, Yu C G, et al. Distribution characteristics and sources of heavy metals in soil of Northeast Huludao[J]. China Environmental Science, 2021, 41(11): 5227−5236. doi: 10.19674/j.cnki.issn1000-6923.20210608.007
    [9]
    王建明, 施泽明, 郑培佳, 等. 四川铅锌冶炼工业区周边土壤重金属地球化学特征及源解析[J]. 地球与环境, 2023, 51(3): 287−298. doi: 10.14050/j.cnki.1672-9250.2022.050.083

    Wang J M, Shi Z M, Zheng P J, et al. Geochemical characteristics and source apportionment of heavy metals in soil around Sichuan lead-zinc smelting industrial zone[J]. Earth and Environment, 2023, 51(3): 287−298. doi: 10.14050/j.cnki.1672-9250.2022.050.083
    [10]
    Zhu Y, An Y F, Li X Y, et al. Geochemical characteristics and health risks of heavy metals in agricultural soils and crops from a coal mining area in Anhui Province, China[J]. Environmental Research, 2023, 241(1): 117670−117680. doi: 10.1016/j.envres,2023.117670
    [11]
    Xia F, Zhao Z F, Niu X, et al. Integrated pollution analysis, pollution area identification and source apportionment of heavy metal contamination in agricultural soil[J]. Journal of Hazardous Materials, 2024, 465(3): 133215.1−133215.10. doi: 10.1016/j.jhazmat.2023.133215
    [12]
    匡荟芬, 胡春华, 吴根林, 等. 结合主成分分析法(PCA)和正定矩阵因子分解法(PMF)的鄱阳湖丰水期表层沉积物重金属源解析[J]. 湖泊科学, 2019, 32(4): 964−976. doi: 10.18307/2020.0406

    Kuang H F, Hu C H, Wu G L, et al. Analysis of heavy metal sources in surface sediments of Poyang Lake in wet period by combining principal component analysis (PCA) and positive definite matrix factorization (PMF)[J]. Lake Science, 2019, 32(4): 964−976. doi: 10.18307/2020.0406
    [13]
    汪春鹏, 尤建功, 孙浩, 等. 辽阳市土壤重金属含量特征及潜在风险评价[J]. 地质通报, 2021, 40(10): 1680−1687. doi: 10.12097/j.issn.1671-2552.2021.10.010

    Wang C P, You J G, Sun H, et al. Characteristics and potential risk assessment of soil heavy metal content in Liaoyang City[J]. Geological Bulletin, 2021, 40(10): 1680−1687. doi: 10.12097/j.issn.1671-2552.2021.10.010
    [14]
    丁宇雪, 初禹, 金晶泽, 等. 东北地区自然资源监测与黑土退化研究[M]. 武汉: 中国地质大学出版社, 2021: 199−205.

    Ding Y X, Chu Y, Jin J Z, et al. Study on natural resources monitoring and degradation of black soil in Northeast China[M]. Wuhan: China University of Geosciences Press, 2021: 199−205.
    [15]
    Wu B, Li L L, Guo S H, et al. Source apportionment of heavy metals in the soil at the regional scale based on soil-forming processes[J]. Journal of Hazardous Materials, 2023, 448(1): 130910−130915. doi: 10.2139/ssrn.4091461
    [16]
    赵秀芳, 张永帅, 冯爱平, 等. 山东安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446−1454.

    Zhao X F, Zhang Y S, Feng A P, et al. characteristics and environmental evaluation of heavy metal elements in agricultural soils in Anqiu, Shandong Province[J]. Geophysical and Chemical Exploration, 2020, 44(6): 1446−1454.
    [17]
    Hou S N, Na Z, Lin T. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L. ) rhizospheric soil of non-ferrous metals smelting area[J]. Environmental Monitoring and Assessment, 2019, 10(191): 1−10. doi: 10.1007/s10661-019-7793-5
    [18]
    Ali I, Khan I M, Khan M J, et al. Exploring geochemical assessment and spatial distribution of heavy metals in soils of Southern KP, Pakistan: Employing multivariate analysis[J]. International Journal of Environmental Analytical Chemistry, 2020, 17(102): 1−15. doi: 10.1080/03067319.2020.1804894
    [19]
    赵岩, 郭常来, 崔健, 等. 辽宁省锦州市北镇农业区土壤重金属分布特征、生态风险评价及源解析[J/OL]. 中国地质(2023-03-14 ).https://kns.cnki.net/kcms/detail/11.1167.P.20230313.1251.002.html.

    Zhao Y, Guo C L, Cui J, et al. Distribution characteristics, ecological risk assessment and source analysis of soil heavy metals in Beizhen agricultural area, Jinzhou City, Liaoning Province[J/OL]. Geology in China (2023-03-14).https://kns.cnki.net/kcms/detail/11.1167.P.20230313.1251.002.html.
    [20]
    刘玖芬, 赵晓峰, 侯红星, 等. 地表基质调查分层及分层测试指标体系设计与构建[J]. 岩矿测试, 2024, 43(1): 16−29. doi: 10.15898/j.ykcs.202310080157

    Liu J F, Zhao X F, Hou H X, et al. The surface of the substrate layered and layered testing index system design and construction[J]. Rock and Mineral Analysis, 2024, 43(1): 16−29. doi: 10.15898/j.ykcs.202310080157
    [21]
    赵君, 饶竹, 王鹏, 等. 黑龙江讷河市富锗土壤地球化学特征及影响因素浅析[J]. 岩矿测试, 2022, 9(4): 642−651. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204013

    Zhao J, Rao Z, Wang P, et al. Heilongjiang nehe rich germanium soil geochemical characteristics and influencing factors of analyses[J]. Rock and Mineral Analysis, 2022, 9(4): 642−651. doi: 10.3969/j.issn.0254-5357.2022.4.ykcs202204013
    [22]
    赵恒谦, 常仁强, 金倩, 等. 河北西石门铁矿区土壤重金属污染空间分析及风险评价[J]. 岩矿测试, 2023, 42(2): 371−382. doi: 10.15898/j.carolcarrollnki.11-2131/td.,202203290066

    Zhao H Q, Chang R Q, Jin Q, et al. Hebei westone door iron mining area of soil heavy metal pollution of spatial analysis and risk evaluation[J]. Rock and Mineral Analysis, 2023, 42(2): 371−382. doi: 10.15898/j.carolcarrollnki.11-2131/td.,202203290066
    [23]
    Williams A J, Antoine J. Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index[J]. Marine Pollution Bulletin, 2020, 157: 111288.
    [24]
    陈泽华, 焦思, 余爱华, 等. 土壤重金属污染评价方法探析——以南京市为例[J]. 森林工程, 2019, 36(3): 28−36. doi: 10.16270/j.cnki.slgc.2020.03.005

    Chen Z H, Jiao S, Yu A H, et al. Evaluation methods of soil heavy metal pollution: A case study of Nanjing[J]. Forest Engineering, 2019, 36(3): 28−36. doi: 10.16270/j.cnki.slgc.2020.03.005
    [25]
    Bing H J, Wu Y H, Zhou J, et al. Historical trends of anthropogenic metals in Eastern Tibetan Plateauas reconstructed from alpine lake sediments over the last century[J]. Chemosphere, 2016, 148: 211−219. doi: 10.1016/j.chemosphere.2016.01.042
    [26]
    张宪依, 庞成宝, 王安婷, 等. 海南岛表层及深层土壤重金属分布特征及源解析[J]. 现代地质, 2020, 34(5): 970−978.

    Zhang X Y, Pang C B, Wang A T, et al. Distribution and source analysis of heavy metals in surface and deep soil of Hainan Island[J]. Geoscience, 2020, 34(5): 970−978.
    [27]
    Gao L, Wang Z W, Shan J J, et al. Aquatic environ mental changes and anthropogenic activities reflected by the sedi-mentary records of the Shima River, Southern China[J]. Environmental Pollution, 2017, 224(5): 70−81. doi: 10.1016/j.envpol.2016.12.056
    [28]
    刘兴旺, 苗万里. 基于多元统计和地统计分析法的县域土壤重金属源解析[C]//中国土壤学会土壤环境专业委员会第十九次会议暨农田土壤污染与修复研讨会, 2017.

    Liu X W, Miao W L. Analysis of heavy metal sources in county soil based on multivariate statistics and geostatistical analysis[C]//The 19th Meeting of the Soil Environment Professional Committee of the Chinese Soil Society and the Symposium on Agricultural Soil Pollution and Remediation, 2017.
    [29]
    Duan X C, Yu H R, Ye T R, et al. Geostatistical mapping and quantitative source apportionment of potentially toxic elements in top- and sub-soils: A case of suburban area in Beijing, China[J]. Ecological Indicators, 2020, 112(5): 106085.1−106085.11. doi: 10.1016/j.ecolind.2020.106085
    [30]
    Xia R, Zhang S Q, Li J, et al. Spatial distribution and quantitative identification of contributions for nutrient and beneficial elements in top- and sub-soil of Huairou District of Beijing, China[J]. Ecological Indicators, 2023, 154: 110853. doi: 10.1016/j.ecolind.2023.110853
    [31]
    臧传子, 温汉辉, 蔡立梅, 等. 广东省揭阳市土壤铅的空间分布特征及影响因素[J]. 现代地质, 2019, 35(5): 1425−1432. doi: 10.19657/j.geoscience.1000-8527.2021.24

    Zang C Z, Wen H H, Cai L M, et al. Spatial distribution characteristics and influencing factors of soil lead in Jieyang City, Guangdong Province[J]. Geoscience, 2019, 35(5): 1425−1432. doi: 10.19657/j.geoscience.1000-8527.2021.24
    [32]
    刘忆莹, 裴久渤, 汪景宽. 东北典型黑土区耕地有机质与pH的空间分布规律及其相互关系[J]. 农业资源与环境学报, 2019, 36(6): 738−743.

    Liu Y Y, Pei J B, Wang J K. Spatial distribution and relationship between organic matter and pH in the typical black soil region of Northeast China[J]. Journal of Agricultural Resources and Environment, 2019, 36(6): 738−743.
    [33]
    Liu N T, Cai X Y, Jia L Y, et al. Quantifying mercury distribution and source contribution in surface soil of Qinghai—Tibetan Plateau using mercury isotopes, environmental science & technology[J]. 2023, 57(14): 5903–5912.
    [34]
    Ma Z W, Chen K, Li Z Y, et al. Heavy metals in soils and road dusts in the mining areas of Western Suzhou, China: A preliminary identification of contaminated sites[J]. Journal of Soils and Sediments, 2016, 16: 204−214. doi: 10.1007/s11368-015-1208-1
    [35]
    裴小龙, 祝晓松, 冯欣, 等. 基于自然资源统一管理的地表基质模型、分类及调查研究[J/OL].地质通报(2024-06-06). https://link.cnki.net/urlid/11.4648.P.20240605.1410.004.

    Pei X L, Zhu X S, Feng X, et al. Based on unity of natural resources management of surface matrix model, classification and investigation[J/OL]. Geological Bulletin (2024-06-06). https://link.cnki.net/urlid/11.4648.P.20240605.1410.004.

Catalog

    Article views (125) PDF downloads (38) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return