• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
JIA Wuhui,LIU Kai,YU Chenghua,et al. Research Progress on the Application of Strontium Isotope Analysis Techniques in Geology: A Review[J]. Rock and Mineral Analysis,2025,44(2):149−160. DOI: 10.15898/j.ykcs.202404050077
Citation: JIA Wuhui,LIU Kai,YU Chenghua,et al. Research Progress on the Application of Strontium Isotope Analysis Techniques in Geology: A Review[J]. Rock and Mineral Analysis,2025,44(2):149−160. DOI: 10.15898/j.ykcs.202404050077

Research Progress on the Application of Strontium Isotope Analysis Techniques in Geology: A Review

More Information
  • Received Date: April 04, 2024
  • Revised Date: August 26, 2024
  • Accepted Date: September 06, 2024
  • Available Online: October 09, 2024
  • Published Date: October 09, 2024
  • HIGHLIGHTS
    (1) The utilization of Sr isotope spans a number of frontier geological domains, including groundwater pollution, deposit genesis, and crustal development.
    (2) The initial abundance of strontium isotopes may alter due to weathering, metamorphism, and fluid mixing, which makes source analysis of strontium isotopes more challenging.
    (3) Understanding the intricate behavior of strontium isotopes in the geosciences requires the development of fine analysis techniques for these materials and the correction of multivariate mixed models.

    Strontium (Sr) isotopes have unique geochemical properties such as time dependence and environmental sensitivity. With the development of testing technology and theoretical system, Sr isotope has become a key technique in geoscience research. However, due to the abnormal interference of the Sr isotope ratio in the complex environment, it may be challenging to appropriately interpret some geological evolution processes using conventional test results based on thermoelectric ionization mass spectrometers (TIMS) or multicollector inductively coupled plasma-mass spectrometers (MC-ICP-MS). Based on the inherent properties and evolutionary characteristics of Sr isotope, this paper summarizes the sample preparation and testing methods in the process of Sr isotope analysis, and expounds the latest progress and understanding of Sr isotope in stratigraphy, petrology, ore deposit science and hydrogeology. It is pointed out that Sr isotope stratigraphy has formed a time series map containing the changes of Sr isotope in seawater from 509 million years to the present. When strontium isotope is employed as a stratigraphic index, it must be properly corrected and interpreted in accordance with a particular geological context because it is influenced by a variety of processes, including weathering and magmatic interference. In the field of petrology, the diagenetic processes of sedimentary rocks, the genesis of various rock types, changes in the paleoenvironment, and crustal tectonic activity are all typically distinguished using strontium isotopes. But the information provided by strontium isotopes is insufficient to precisely describe the creation of rocks because of the impact of weathering and metamorphism. Sr isotope is used in the field of ore deposit science to determine the source of ore-forming materials, the process of fluid evolution and the genetic type of ore deposit. However, at high temperatures, diffusion and mineral recombination can cause the rubidium-strontium isotope system to reset, which can interfere with determining the age of the material. The complicated groundwater system may make it challenging to interpret Sr isotope, which is used in hydrogeology to examine the origin of groundwater and the interaction between water and rock. Therefore, this paper makes the following recommendations for future research: to uncover the mechanism of strontium isotope fractionation at varying temperatures, to develop fine strontium isotope tracer technology to get around the limitations of current strontium isotope research, and to reconstruct the accurate history of the paleomarine strontium isotope ratio. It may offer backing for the advancement and utilization of strontium isotope theory.

  • [1]
    杨斌, 倪师军, 罗杨, 等. Sr同位素研究进展及其在地学中的应用[C]//资源环境与地学空间信息技术新进展学术讨论会. 成都: 成都理工大学, 2016.

    Yang B, Ni S J, Luo Y, et al. Research Progress of Sr Isotope and Its Application In Geoscience[C]//Symposium on Resources, Environment and Geospatial Information Technology. Chengdu: Chengdu University of Technology, 2016.
    [2]
    胡作维, 李云, 李北康, 等. 显生宙以来海水锶同位素组成研究的回顾与进展[J]. 地球科学进展, 2015, 30(1): 37−49. doi: 10.11867/j.issn.1001-8166.2015.01.0037

    Hu Z W, Li Y, Li B K, et al. An Overview of the Strontium Isotopic Composition of Phanerozoic Seawater[J]. Advances in Earth Science, 2015, 30(1): 37−49. doi: 10.11867/j.issn.1001-8166.2015.01.0037
    [3]
    Yu X, Wang C, Huang H, et al. Origin of Lithium in Oilfield Brines in Continental Petroliferous Basin: Insights from Li and Sr Isotopes in the Jianghan Basin, Central China[J]. Marine and Petroleum Geology, 2024, 160: 106576. doi: 10.1016/j.marpetgeo.2023.106576
    [4]
    Wang C C, Hemming S, O’connell S, et al. Sedimentary Stratigraphy and Provenance off Dronning Maud Land (East Antarctica) During the Mid-Pleistocene Transition: Implications for Paleoclimate and Ice Dynamics[J]. Quaternary Science Reviews, 2024, 325: 108483. doi: 10.1016/j.quascirev.2023.108483
    [5]
    Jia W, Liu K, Yan J, et al. Characteristics of Geothermal Waters in Eastern Wugongshan Based on Hydrogen, Oxygen, and Strontium Isotopes[J]. Applied Geochemistry, 2024, 161: 105874. doi: 10.1016/j.apgeochem.2023.105874
    [6]
    Wickman F E. Isotope ratios: A Clue to the Age of Certain Marine Sediments[J]. The Journal of Geology, 1948, 56(1): 61−66. doi: 10.1086/625478
    [7]
    柯伟杰, 魏广祎, 殷一盛, 等. 扬子地块南缘中-晚寒武世浅海多次短暂增氧及其诱因: 来自碳酸盐岩铈异常及碳-锶同位素证据[J]. 地质学报, 2023, 97(3): 789−809. doi: 10.3969/j.issn.0001-5717.2023.03.010

    Ke W J, Wei G Y, Yin Y S, et al. Shallow Marine Oxidation Pulses During the Middle-Late Cambrian in South China and Their Potential Triggers: Evidences from Carbonate Ce Anomaly and C-Sr Isotopes[J]. Acta Geologica Sinica, 2023, 97(3): 789−809. doi: 10.3969/j.issn.0001-5717.2023.03.010
    [8]
    蒋苏扬, 张永生, 黄文辉, 等. 鄂尔多斯盆地奥陶系锶同位素地球化学特征[J]. 地质学报, 2019, 93(11): 2889−2903. doi: 10.3969/j.issn.0001-5717.2019.11.013

    Jiang S Y, Zhang Y S, Huang W H, et al. Geochemical Characteristics of Ordovician Strontium Isotope in the Ordos Basin[J]. Acta Geologica Sinica, 2019, 93(11): 2889−2903. doi: 10.3969/j.issn.0001-5717.2019.11.013
    [9]
    Nehyba S, Opletal V, Holcová K, et al. The Return of the Iváň Canyon, a Large Neogene Canyon in the Alpine—Carpathian Foredeep[J]. Marine and Petroleum Geology, 2022, 144: 105808. doi: 10.1016/j.marpetgeo.2022.105808
    [10]
    许康康, 孙凯, 吴兴源. 赞比亚索卢韦齐地区新元古代石英二长岩的成因: 年代学、地球化学和Sr–Nd–Hf同位素约束[J]. 西北地质, 2023, 56(5): 20−34. doi: 10.12401/j.nwg.2023116

    Xu K K, Sun K, Wu X Y. Petrogenesis of Neoproterozoic Quartz Monzonite in Solwezi Region, Zambia: Constraint from Geochronology, Geochemistry and Sr-Nd-Hf Isotopes[J]. Northwestern Geology, 2023, 56(5): 20−34. doi: 10.12401/j.nwg.2023116
    [11]
    杨朝屹, 夏青松, 杨鹏, 等. 川西—川北地区中二叠统白云岩成岩流体特征分析及复合成岩环境重建[J/OL]. 沉积学报(2024-03-08). https://doi.org/10.14027/j.issn.1000-0550.2024.021.

    Yang C Q, Xia Q S, Yang P, et al. Analysis of Diagenetic Fluid Characteristics and Reconstruction of Composite Diagenetic Environments in the Middle Permian Dolomites of the Western-Northern Sichuan Basin[J/OL]. Acta Sedimentologica Sinica (2024-03-08). https://doi.org/10.14027/j.issn.1000-0550.2024.021.
    [12]
    王美云, 李杰, 宋明春, 等. 胶东大邓格金多金属矿床成矿机制: 来自黄铁矿Rb-Sr定年、原位硫同位素及微量元素的制约[J]. 岩石学报, 2023, 39(5): 1501−1515. doi: 10.18654/1000-0569/2023.05.17

    Wang M Y, Li J, Song M C, et al. The Metallogenic Mechanism of the Dadengge Gold Polymetallic Deposit in the Jiaodong Peninsula: Constraints from Pyrite Rb-Sr Dating, in situ S Isotope and Trace Elements[J]. Acta Petrologica Sinica, 2023, 39(5): 1501−1515. doi: 10.18654/1000-0569/2023.05.17
    [13]
    朱光有, 李茜. 白云岩成因类型与研究方法进展[J]. 石油学报, 2023, 44(7): 1167−1190. doi: 10.7623/syxb202307012

    Zhu G Y, Li X. Progress in Genetic Types and Research Methods of Dolomite[J]. Acta Petrolei Sinica, 2023, 44(7): 1167−1190. doi: 10.7623/syxb202307012
    [14]
    黄超, 王浩, 师文贝, 等. 云母Rb-Sr等时线年龄原位微区LA-ICP-MS/MS测定[J]. 中国科学: 地球科学, 2023, 53(11): 2648−2668. doi: 10.1360/SSTe-2022-0413

    Huang C, Wang H, Shi W B, et al. In situ Rb-Sr Dating of Mica by LA-ICP-MS/MS[J]. Science China Earth Sciences, 2023, 53(11): 2648−2668. doi: 10.1360/SSTe-2022-0413
    [15]
    戴梦宁, 宗春蕾. 全岩Lu-Hf同位素研究综述[J]. 地下水, 2016, 38(6): 35−38. doi: 10.3969/j.issn.1004-1184.2016.06.012

    Dai M N, Zong C L. A Review of Whole Rock Lu-Hf Isotopes[J]. Ground Water, 2016, 38(6): 35−38. doi: 10.3969/j.issn.1004-1184.2016.06.012
    [16]
    魏雨秋, 胡雅婷, 周炼, 等. 动态多接收TIMS方法高精度测定岩石标准物质的锶同位素组成[J]. 岩矿测试, 2023, 42(5): 944−956. doi: 10.15898/j.ykcs.202308020120

    Wei Y Q, Hu Y T, Zhou L, et al. High Precision Strontium Isotope Measurement of Rock Standard Materials by Multidynamic TIMS[J]. Rock and Mineral Analysis, 2023, 42(5): 944−956. doi: 10.15898/j.ykcs.202308020120
    [17]
    宋彪. 同位素和微区分析测试技术应用研究[C]//“十五”重要地质科技成果暨重大找矿成果交流会. 北京: 中国地质学会, 2006.

    Song B. Research on the Application of Isotope and Microregion Analysis and Testing Techniques[C]//The Tenth Five-Year Plan Important Geological Scientific and Technological Achievements and Major Prospecting Achievements Exchange Meeting. Beijing: Geological Society of China, 2006.
    [18]
    白江昊, 刘芳, 张兆峰, 等. 非传统稳定同位素分析技术要点[J]. 地学前缘, 2020, 27(3): 1−13. doi: 10.13745/j.esf.sf.2020.4.7

    Bai J H, Liu F, Zhang Z F, et al. Key Aspects of Non-Traditional Isotope Analysis[J]. Earth Science Frontiers, 2020, 27(3): 1−13. doi: 10.13745/j.esf.sf.2020.4.7
    [19]
    潘旭, 孙子威, 高继苇, 等. 多步浸提法在碳酸盐岩 Sr同位素分析中的对比及优化[J]. 岩矿测试, 2023, 42(4): 691−706. doi: 10.15898/j.ykcs.202302200023

    Pan X, Sun Z W, Gao J W, et al. Comparison and Optimization of Sr Isotope Analysis in Carbonate Rocks by Multiple-Step Leaching Method[J]. Rock and Mineral Analysis, 2023, 42(4): 691−706. doi: 10.15898/j.ykcs.202302200023
    [20]
    徐卓, 李力力, 朱留超, 等. Eichrom Sr树脂用于铀矿浓缩物中铅锶的分离富集研究[J]. 岩矿测试, 2019, 38(1): 55−61. doi: 10.15898/j.cnki.11-2131/td.201803260031

    Xu Z, Li L L, Zhu L C, et al. Application of Eichrom Sr Resin to the Separation and Enrichment of Lead and Strontium in Uranium Ore Concentrates[J]. Rock and Mineral Analysis, 2019, 38(1): 55−61. doi: 10.15898/j.cnki.11-2131/td.201803260031
    [21]
    戴梦宁, 宗春蕾, 袁洪林. 高Rb/Sr岩石样品中Sr同位素多接收等离子体质谱分析校正方法研究[J]. 岩矿 测试, 2012, 31(1): 95−102. doi: 10.3969/j.issn.0254-5357.2012.01.012

    Dai M N, Zong C L, Yuan H L. A Calibration Strategy of 87Sr/86Sr ratio for Rocks with High Rb/Sr Measured by Multiple Collector-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 95−102 doi: 10.3969/j.issn.0254-5357.2012.01.012
    [22]
    陈栩琦, 曾振, 于慧敏, 等. 高精度稳定锶同位素分析方法综述[J]. 高校地质学报, 2021, 27(3): 264−274. doi: 10.16108/j.issn1006-7493.2021031

    Chen X Q, Zeng Z, Yu H M, et al. High Precision Analytical Method for Stable Strontium Isotopes[J]. Geological Journal of China Universities, 2021, 27(3): 264−274. doi: 10.16108/j.issn1006-7493.2021031
    [23]
    张璐瑶, 陈子谷, 杨学志, 等. 多接收器电感耦合等离子体质谱方法的开发和应用进展[J]. 色谱, 2021, 39(1): 4−9. doi: 10.3724/SP.J.1123.2020.07030

    Zhang L Y, Chen Z G, Yang X Z, et al. Recent Advances in Method Development and Application of Multi-Collector Inductively Coupled Plasma Mass Spectrometry[J]. Chinese Journal of Chromatography, 2021, 39(1): 4−9. doi: 10.3724/SP.J.1123.2020.07030
    [24]
    Zack T, Hogmalm K J. Laser Ablation Rb/Sr Dating by Online Chemical Separation of Rb and Sr in an Oxygen-Filled Reaction Cell[J]. Chemical Geology, 2016, 437: 120−133. doi: 10.1016/j.chemgeo.2016.05.027
    [25]
    Xie L, Yang J, Yin Q, et al. High Spatial Resolution in situ U-Pb Dating Using Laser Ablation Multiple Ion Counting Inductively Coupled Plasma Mass Spectrometry (LA-MIC-ICP-MS)[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(5): 975−986. doi: 10.1039/C6JA00387G
    [26]
    Subarkah D, Blades M L, Collins A S, et al. Unraveling the Histories of Proterozoic Shales Through in situ Rb-Sr Dating and Trace Element Laser Ablation Analysis[J]. Geology, 2022, 50(1): 66−70. doi: 10.1130/G49187.1
    [27]
    Laureijs C T, Coogan L A, Spence J. Regionally Variable Timing and Duration of Celadonite Formation in the Troodos Lavas (Cyprus) from Rb-Sr Age Distributions[J]. Chemical Geology, 2021, 560: 119995. doi: 10.1016/j.chemgeo.2020.119995
    [28]
    Gorojovsky L, Alard O. Optimisation of Laser and Mass Spectrometer Parameters for the in situ Analysis of Rb/Sr Ratios by LA-ICP-MS/MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(10): 2322−2336. doi: 10.1039/D0JA00308E
    [29]
    周强, 李金英, 梁汉东, 等. 二次离子质谱(SIMS)分析技术及应用进展[J]. 质谱学报, 2004, 25(2): 113−120. doi: 10.3969/j.issn.1004-2997.2004.02.013

    Zhou Q, Li J Y, Liang H D, et al. Recent Developments on Secondary Ion Mass Spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2004, 25(2): 113−120. doi: 10.3969/j.issn.1004-2997.2004.02.013
    [30]
    Burke W H, Denison R E, Hetherington E A, et al. Variation of Seawater 87Sr/86Sr Throughout Phanerozoic time[J]. Geology, 1982(10): 516−519. doi: 10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2
    [31]
    Howarth R J, McArthur J M. Statistics for Strontium Isotope Stratigraphy: A Robust LOWESS Fit to the Marine Sr-Isotope Curve for 0 to 206Ma, with Look-up Table for Derivation of Numeric Age[J]. The Journal of Geology, 1997, 105(4): 441−456. doi: 10.1086/515938
    [32]
    Mcarthur J M, Howarth R J, Bailey T R. Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr-Isotope Curve for 0-509Ma and Accompanying Look-up Table for Deriving Numerical Age[J]. The Journal of Geology, 2001, 109(2): 155−170. doi: 10.1086/319243
    [33]
    Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater[J]. Chemical Geology, 1999, 161(1): 59−88.
    [34]
    MontañEz I P, Banner J L, Osleger D A, et al. Integrated Sr Isotope Variations and Sea-Level History of Middle to Upper Cambrian Platform Carbonates: Implications for the Evolution of Cambrian Seawater 87Sr/86Sr[J]. Geology, 1996, 24(10): 917−920. doi: 10.1130/0091-7613(1996)024<0917:ISIVAS>2.3.CO;2
    [35]
    Li Y, Li C, Guo J. Re-Evaluation and Optimisation of Dissolution Methods for Strontium Isotope Stratigraphy Based on Chemical Leaching of Carbonate Certificated Reference Materials[J]. Microchemical Journal, 2020, 154: 104607. doi: 10.1016/j.microc.2020.104607
    [36]
    Claudio G, Anna C, Uwe B, et al. Strontium Isotope Stratigraphic Insights on the End-Permian Mass Extinction and the Permian—Triassic Boundary in the Dolomites (Italy)[J]. Chemical Geology, 2022, 605.
    [37]
    Pathak P, Gupta D K. Strontium Contamination in the Environment[M]. Springer International Publishing, 2020.
    [38]
    Kong H, Wu J, Li H, et al. Early Paleozoic Tectonic Evolution of the South China Block: Constraints from Geochemistry and Geochronology of Granitoids in Hunan Province[J]. Lithos, 2021, 380-381: 105891. doi: 10.1016/j.lithos.2020.105891
    [39]
    黄思静, 黄喻, 兰叶芳, 等. 四川盆地东北部晚二叠世—早三叠世白云岩与同期海水锶同位素组成的对比研究[J]. 岩石学报, 2011, 27(12): 3831−3842.

    Huang S J, Huang Y, Lan Y F, et al. A Comparative Study on Strontium Isotope Composition of Dolomites and Their Coeval Seawater in the Late Permian—Early Triassic, NE Sichuan Basin[J]. Acta Petrologica Sinica, 2011, 27(12): 3831−3842.
    [40]
    Chang C, Beckford H O, Ji H. Indication of Sr Isotopes on Weathering Process of Carbonate Rocks in Karst Area of Southwest China[J]. Sustainability, 2022, 14(8): 4822. doi: 10.3390/su14084822
    [41]
    李向东, 魏泽昳, 何幼斌, 等. 宁夏香山群徐家圈组顶部薄层石灰岩锶同位素与局限海盆地分析[J]. 地质 学报, 2024, 98(4): 1229−1243. doi: 10.19762/j.cnki.dizhixuebao.2023284

    Li X D, Wei Z Y, He Y B, et al. Strontium Isotope and Restricted Marine Basin Analysis from Thin-Bedded Limestone at the Top of Xujiajuan Formation, Xiangshan Group in Ningxia, China[J]. Acta Geologica Sinica, 2024, 98(4): 1229−1243. doi: 10.19762/j.cnki.dizhixuebao.2023284
    [42]
    Mehrabi H. Deposition, Diagenesis, and Geochemistry oF Upper Cretaceous Carbonates (Sarvak Formation) in the Zagros Basin and The Persian Gulf, Iran[J]. Minerals, 2023, 13(8): 1078. doi: 10.3390/min13081078
    [43]
    Chen Z, Yang Y, Dong C, et al. Genesis of Cambrian Dolomites in the Bachu Area, Tarim Basin, NW China: Constraints from Petrology, Geochemistry, and Fluid Inclusions[J]. Minerals, 2022, 12(9): 1157. doi: 10.3390/min12091157
    [44]
    杨明磊, 刘晨虎, 杨伟强, 等. 川东地区寒武系洗象池群下段厚层白云岩特征及成因[J]. 断块油气田, 2024, 31(4): 599−610. doi: 10.6056/dkyqt202404005

    Yang M L, Liu C H, Yang W Q, et al. Characteristics and Genesis of Massive Dolostones in the Lower Cambrian Xixiangchi Group, Eastern Sichuan Basin[J]. Fault-Block Oil & Gas Field, 2024, 31(4): 599−610. doi: 10.6056/dkyqt202404005
    [45]
    Mu J, Zhao S, Brzozowski M, et al. Geology, Geochemistry and Genesis of the World-Class Shizhushan Wollastonite Deposit, Mengshan Area, South China[J]. Ore Geology Reviews, 2023, 158: 105469. doi: 10.1016/j.oregeorev.2023.105469
    [46]
    Wang Q, Dai S, French D, et al. Hydrothermally-Altered Coal from the Daqingshan Coalfield, Inner Mongolia, Northern China: Evidence from Stable Isotopes of C Within Organic Matter and C-O-Sr in Associated Carbonates[J]. International Journal of Coal Geology, 2023, 276: 104330. doi: 10.1016/j.coal.2023.104330
    [47]
    Kang F, Liu B, Li H, et al. Multistage W-Sn Metallogenic Processes in the Xitian Ore Field, South China: Evolution from Skarn-Type to Vein-Type Mineralization[J]. Ore Geology Reviews, 2023, 158: 105495. doi: 10.1016/j.oregeorev.2023.105495
    [48]
    杨柳, 尹萍, 徐耀鉴, 等. 湘西董家河铅锌矿床成矿流体和成矿物质来源: 来自流体包裹体和C-O-Sr同位素的制约[J]. 矿物学报, 2022, 42(5): 557−569.

    Yang L, Yin P, Xu Y J, et al. Sources of Ore-forming Fluids and Materials of the Dongjiahe Lead-Zinc Deposit in the Western Hunan, China: Constraints from Data of Fluid Inclusions and C-O-Sr Isotopes[J]. Acta Mineralogica Sinica, 2022, 42(5): 557−569.
    [49]
    杨志娟, 朱志军, 丁婷, 等. 滇西兰坪盆地膏盐微量元素、同位素地球化学特征及意义[J]. 盐湖研究, 2024, 32(1): 76−87. doi: 10.12119/j.yhyj.202401009

    Yang Z J, Zhu Z J, Ding T, et al. The Trace Elemental and Isotopic Characteristics of Gypsum and Its Significance in the Lanping Basin, Western Yunnan[J]. Journal of Salt Lake Research, 2024, 32(1): 76−87. doi: 10.12119/j.yhyj.202401009
    [50]
    张洁, 贾连奇, 范立勇, 等. 乌审旗地区盐下奥陶系流体来源及其油气意义[J/OL]. 沉积学报 (2024-01-14). https://doi.org/10.14027/j.issn.1000-0550.2023.136

    Zhang J, Jia L Q, Fan L Y, et al. The Source of the Pre-Salt Ordovician Fluid and Its Significance for Hydrocarbon in Wushenqi Area[J/OL]. Acta Sedimentologica Sinica (2024-01-14).https://doi.org/10.14027/j.issn.1000-0550.2023.136
    [51]
    李慧莉, 高键, 曹自成, 等. 塔里木盆地顺托果勒低隆起走滑断裂带流体时空分布及油气成藏意义[J]. 地学前缘, 2023, 30(6): 316−328. doi: 10.13745/j.esf.sf.2023.2.36

    Li H L, Gao J, Cao Z C, et al. Spatial-temporal Distribution of Fluid Activities and Its Significance for Hydrocarbon Accumulation in the Strike-Slip Fault Zones, Shuntuoguole Low-Uplift, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 316−328. doi: 10.13745/j.esf.sf.2023.2.36
    [52]
    Gao Y, Sun Y, Wang D, et al. Geological and Geochemical Constraints on the Origin of the Sr Mineralization in Huayingshan Ore District, Chongqing, South China[J]. Minerals, 2023, 13(2): 279. doi: 10.3390/min13020279
    [53]
    山俊杰, 毕有益, 邓美洲, 等. 川西坳陷新场气田须二气藏地层水成因研究——水化学和锶同位素证据[J]. 岩石矿物学杂志, 2023, 42(5): 735−744. doi: 10.20086/j.cnki.yskw.2023.0511

    Shan J J, Bi Y Y, Deng M Z, et al. Hydrochemistry and Sr Isotope Constraints on the Genesis of Formation Water in the 2nd Member of Xujiahe Formation Gas Reservoir in Xinchang Gas Field, Western Sichuan Depression[J]. Acta Petrologica et Mineralogica, 2023, 42(5): 735−744. doi: 10.20086/j.cnki.yskw.2023.0511
    [54]
    陈康, 宋文磊, 高永宝, 等. 阿尔金西段小白河沟地区萤石矿床成因: 来自年代学、稀土元素、Sr-Nd同位素和流体包裹体的约束[J]. 新疆地质, 2023, 41(S1): 28.

    Chen K, Song W L, Gao Y B, et al. Genesis of the Fluorite Deposit in Xiaobaihegou Area of the Western Altyn Formation: Constraints from Chronology, Rare Earth Elements, Sr-Nd Isotopes and Fluid Inclusions[J]. Xinjiang Geology, 2023, 41(S1): 28.
    [55]
    赵辛敏, 高永宝, 燕洲泉, 等. 阿尔金卡尔恰尔超大型萤石矿带成因: 来自年代学、稀土元素和Sr-Nd同位素的约束[J]. 西北地质, 2023, 56(1): 31−47. doi: 10.12401/j.nwg.2022035

    Zhao X M, Gao Y B, Yan Z Q, et al. Genesis of Kalqiaer Super–Large Fluorite Zone in Altyn Tagh Area: Chronology, Rare Earth Elements and Sr-Nd Isotopes Constraints[J]. Northwestern Geology, 2023, 56(1): 31−47. doi: 10.12401/j.nwg.2022035
    [56]
    肖晓牛, 邢波, 余新明, 等. 闽中梅仙矿集区丁家山铅锌矿床成矿时代厘定及成矿物质来源: 来自闪锌矿Rb-Sr同位素的证据[J]. 地质通报, 2022, 41(11): 2026−2034. doi: 10.12097/j.issn.1671-2552.2022.11.011

    Xiao X N, Xing B, Yu X M, et al. Determination of Mineralization Age and Ore-forming Materials of the Dingjiashan Pb-Zn Deposit in the Meixian Ore Concentration Area, the Central Fujian Province: Evidence from the Sphalerite Rb-Sr Isotope[J]. Geological Bulletin of China, 2022, 41(11): 2026−2034. doi: 10.12097/j.issn.1671-2552.2022.11.011
    [57]
    高键, 李慧莉, 何治亮, 等. 川东南平桥地区寒武系洗象池群多元复合成藏过程及其勘探启示[J]. 地学前缘, 2023, 30(6): 263−276. doi: 10.13745/j.esf.sf.2023.2.20

    Gao J, Li H L, He Z L, et al. Multi-Stage Hydrocarbon Accumulation in Cambrian Xixiangchi Group, Pingqiao Area, Southeastern Sichuan and Its Implications for Hydrocarbon Exploration[J]. Earth Science Frontiers, 2023, 30(6): 263−276. doi: 10.13745/j.esf.sf.2023.2.20
    [58]
    陆俐合, 于海燕, 蓝叶, 等. 广西大化县层控型透闪石玉成矿带不同岩体地球化学及锶同位素特征对比研究[J/OL]. 桂林理工大学学报(2023-12-13). https://link.cnki.net/urlid/45.1375.n.20231213.1157.002

    Lu L H, Yu H Y, Lan Y, et al. Comparative Study on Geochemistry and Strontium Isotope Characteristics of Different Rock Bodies in Stratified Tremolite Jade Metallogenic Belt in Dahua, Guangxi [J/OL]. Journal of Guilin University of Technology (2023-12-13). https://link.cnki.net/urlid/45.1375.n.20231213.1157.002
    [59]
    唐春雷, 申豪勇, 赵春红, 等. 古堆泉域岩溶地下水水化学特征及成因[J]. 环境科学, 2023, 44(9): 4874−4883. doi: 10.13227/j.hjkx.202210153

    Tang C L, Shen H Y, Zhao C H, et al. Hydrochemical Characteristics and Formation Causes of Ground Karst Water Systems in Gudui Spring Catchment[J]. Environmental Science, 2023, 44(9): 4874−4883. doi: 10.13227/j.hjkx.202210153
    [60]
    Shand P, Darbyshire D P F, Love A J, et al. Sr Isotopes in Natural Waters: Applications to Source Characterisation and Water–Rock Interaction in Contrasting Landscapes[J]. Applied Geochemistry, 2009, 24: 574−586. doi: 10.1016/j.apgeochem.2008.12.011
    [61]
    张卓, 柳富田, 陈社明. 氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用[J]. 华北地质, 2023, 46(3): 49−56. doi: 10.19948/j.12-1471/P.2023.03.07

    Zhang Z, Liu F T, Chen S M. Review on the Application of H, O, Sr, Ca, Li and B Isotopes in the Research of High-Fluoride Groundwater[J]. North China Geology, 2023, 46(3): 49−56. doi: 10.19948/j.12-1471/P.2023.03.07
    [62]
    张松涛, 谢浩, 梁永平, 等. 同位素技术在古堆泉岩溶水保护中的应用[J]. 地质科技通报, 2023, 42(4): 147−153. doi: 10.19509/j.cnki.dzkq.tb202302400

    Zhang S T, Xie H, Liang Y P, et al. Application of Isotope Technology to Protecting Karstic Water in the Gudui Spring Area[J]. Bulletin of Geological Science and Technology, 2023, 42(4): 147−153. doi: 10.19509/j.cnki.dzkq.tb202302400
    [63]
    Herrera C, Godfrey L, Urrutia J, et al. Origin of Old Saline Groundwater in the Deep Coastal Formations of the Atacama Desert Region: Consideration of Lithium, Boron, Strontium and Uranium Isotopes Contents[J]. Journal of Hydrology, 2023, 624: 129919. doi: 10.1016/j.jhydrol.2023.129919
    [64]
    李小倩, 周爱国, 刘存富, 等. 河北平原深层地下水中氟含量与锶同位素组成的关系研究[J]. 水文, 2008, 28(4): 38−42. doi: 10.3969/j.issn.1000-0852.2008.04.011

    Li X Q, Zhou A G, Liu C F, et al. Relation Between F Content and Strontium Isotopes Composition in Deep Groundwater of Hebei Plain[J]. Journal of China Hydrology, 2008, 28(4): 38−42. doi: 10.3969/j.issn.1000-0852.2008.04.011
    [65]
    顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011.

    Gu W Z. Isotope Hydrology[M]. Beijing: Science Press, 2011.
    [66]
    Miyajima Y, Jakubowicz M, Dopieralska J, et al. Discharge Timing and Origin of Fluids at Methane Seeps in the Late Cretaceous Subduction Zone of Hokkaido, Japan: Coupling U-Pb Calcite Dating with Sr-Nd Isotope Analysis[J]. Chemical Geology, 2023, 632: 121553. doi: 10.1016/j.chemgeo.2023.121553
    [67]
    Herrera C, Urrutia J, Gamboa C, et al. Evaluation of the Impact of the Intensive Exploitation of Groundwater and the Mega-Drought Based on the Hydrochemical and Isotopic Composition of the Waters of the Chacabuco—Polpaico Basin in Central Chile[J]. Science of the Total Environment, 2023, 895: 165055. doi: 10.1016/j.scitotenv.2023.165055
    [68]
    Mei A, Wu X, Zeng Y, et al. Formation Processes of Groundwater in a Non-Ferrous Metal Mining City of China: Insights from Hydrochemical and Strontium Isotope Analyses[J]. Environmental Science and Pollution Research, 2024, 31(10): 15716−15732. doi: 10.1007/s11356-024-32186-4

Catalog

    Article views (469) PDF downloads (96) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return