Citation: | LI Zhixiong,LIU Zhenchao,LU Qianshu,et al. Effect of Hydroxide-Based Ionic Liquids on the Determination of Available Phosphorus in Alkaline Soils[J]. Rock and Mineral Analysis,2024,43(5):802−811. DOI: 10.15898/j.ykcs.202403280072 |
The level of available phosphorus in soil significantly impacted plant growth, soil fertility, and agricultural productivity. However, in alkaline soils, phosphorus mobility was low and was often tightly bound to minerals and organic matter, complicating the extraction process. Traditional extractants such as hydrochloric acid, ammonium fluoride, and sodium bicarbonate exhibited variability in extraction efficiency, affecting the accuracy of available phosphorus measurements in soil. Recent research on novel extractants focused on combining different chemicals to improve extraction efficiency and measurement accuracy. In this study, inductively coupled plasma-optical emission spectrometry (ICP-OES) was employed to determine available phosphorus in alkaline soils, and the effects of sodium hydroxide (NaOH) and cetyltrimethylammonium (CTA) as a mixed extractant were explored. The experimental results indicated that the addition of CTA facilitated interactions between phosphorus and water molecules or other ions in solution, thereby enhancing phosphorus solubility and extraction efficiency. Under optimized experimental conditions, the mixed extractant demonstrated significant advantages in improving the accuracy and efficiency of available phosphorus determination in alkaline soils. Additionally, the mixed extractant also showed effective extraction for neutral (NSA-4) and acidic (NSA-5) soil samples. These results suggested that the new mixed extractant had potential for broad applicability and promising prospects in the determination of available phosphorus in soils.
[1] |
任冬, 陈宇豪, 张廷忠. 高压密闭消解技术在土壤有效态样品前处理中的应用[J]. 岩矿测试, 2020, 39(1): 143−149. doi: 10.15898/j.cnki.11-2131/td.201902270027
Ren D, Chen Y H, Zhang T Z. Application of high pressure closed digestion in pretreatment of effective soil samples[J]. Rock and Mineral Analysis, 2020, 39(1): 143−149. doi: 10.15898/j.cnki.11-2131/td.201902270027
|
[2] |
周文利, 宋盼盼, 吴军. 过磷酸钙对石灰性土壤有效磷及无机磷组分的影响[J]. 中国土壤与肥料, 2023, 23(7): 86−95. doi: 10.11838/sfsc.1673-6257.22511
Zhou W L, Song P P, Wu J. Effect of superphosphate on available phosphorus and inorganic phosphorus fractions in calcareous soil[J]. Soil and Fertilizer Sciences in China, 2023, 23(7): 86−95. doi: 10.11838/sfsc.1673-6257.22511
|
[3] |
林晓华, 张宁, 王润泽, 等. 微塑料种类、浓度和粒径对黄土区土壤有效磷含量的影响[J]. 环境科学学报, 2023, 43(7): 331−338. doi: 10.13671/j.hjkxxb.2023.0005
Lin X H, Zhang N, Wang R Z, et al. Effects of type concentration and particle size of microplastics on soil available phosphorus[J]. Acta Scientiae Circumstantiae, 2023, 43(7): 331−338. doi: 10.13671/j.hjkxxb.2023.0005
|
[4] |
Otabbong E, Borling K, Katterer T, et al. Compatibility of the ammonium lactate (AL) and sodium bicarbonate (Olsen) methods for determining available phosphorus in Swedish soils[J]. Acta Agriculturae Scandinavica: Section B-Plant Soil Science, 2009, 59(4): 373−378.
|
[5] |
Dyer B. On the analytical determination of probably available “mineral” plant food in soil[J]. Transactions of the Chemical Society, 1894, 65: 115−167. doi: 10.1039/CT8946500115
|
[6] |
Olsen S R, Sommers L E. Phosphorus[M]//Page A L, Miller R H, Keeney D R. Methods of soil analysis. Part 2: Chemical and microbiological properties (The 2nd edition). USA: American Society of Agronomy, 1982.
|
[7] |
梅连平. 混合溶液提取-电感耦合等离子体原子发射光谱法同时测定碱性土壤中速效钾和有效磷、铁、锰、铜、锌的含量[J]. 理化检验(化学分册), 2019, 55(9): 1112−1116. doi: 10.11973/lhjy-hx201909026
Mei L P. Extraction of analytes with a composite solution simultaneous ICP-AES determination of quick-acting K and effective P, Fe, Mn, Cu, Zn, in alkaline soil[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(9): 1112−1116. doi: 10.11973/lhjy-hx201909026
|
[8] |
Sarker A, Kashem M, Osman K, et al. Evaluation of available phosphorus by soil test methods in an acidic soil incubated with different levels of lime and phosphorus[J]. Open Journal of Soil Science, 2014, 4(3): 103−108. doi: 10.4236/ojss.2014.43014
|
[9] |
Satoh S, Viyakarn V, Yamazaki Y, et al. A simple method for determination of available phosphorus content in fish diet[J]. Nippon Suisan Gakkaishi, 1992, 58(11): 2095−2100. doi: 10.2331/suisan.58.2095
|
[10] |
Turner L B, Cade-Menun J B, Condron M L, et al. Extraction of soil organic phosphorus[J]. Talanta, 2004, 66(2): 294−306. doi: 10.1016/j.talanta.2004.11.012
|
[11] |
谢嘉霖, 林传辉, 欧阳童亮. ASI法同时测定无土栽培基质中有效磷和有效钾的含量[J]. 江苏农业科学, 2014, 42(4): 245−248. doi: 10.15889/j.issn.1002-1302.2014.04.100
Xie J L, Lin C H, Ouyang T L. The ASI method simultaneously determined the content of available phosphorus and available potassium in soilless culture substrates[J]. Jiangsu Agricultural Sciences, 2014, 42(4): 245−248. doi: 10.15889/j.issn.1002-1302.2014.04.100
|
[12] |
杨青, 孙晓慧, 黄尧, 等. 超声浸提-电感耦合等离子体发射光谱法测定石灰性土壤中的有效磷[J]. 分析测试技术与仪器, 2024, 30(3): 196−202. doi: 10.16495/j.1006-3757.2024.03.008
Yang Q, Sun X H, Huang Y, et al. Determination of available phosphorus in calcareous soil by inductively coupled plasma emission spectrometry with ultrasonic extraction[J]. Analysis and Testing Technology and Instruments, 2024, 30(3): 196−202. doi: 10.16495/j.1006-3757.2024.03.008
|
[13] |
陈理, 毕颖洁, 文刘归, 等. 电感耦合等离子体发射光谱法测定酸性土壤中有效磷的研究[J]. 磷肥与复肥, 2022, 37(4): 37−38. doi: 10.3969/j.issn.1007-6220.2022.04.014
Chen L, Bi Y J, Wen L G, et al. Inductively coupled plasma emission spectrometry for the determination of available phosphorus in acidic soils[J]. Phosphate & Compound Fertilizer, 2022, 37(4): 37−38. doi: 10.3969/j.issn.1007-6220.2022.04.014
|
[14] |
秦海娜, 杨亮改, 耿丽婵. 对电感耦合等离子体发射光谱法测定土壤中有效磷的改进应用[J]. 资源环境与工程, 2019, 33(S1): 146−149. doi: 10.16536/j.cnki.issn.1671-1211.2019.S1.032
Qin H N, Yang L G, Geng L C. Improved application of inductively coupled plasma emission spectrometry for the determination of active phosphorus in soil[J]. Resources Environment & Engineering, 2019, 33(S1): 146−149. doi: 10.16536/j.cnki.issn.1671-1211.2019.S1.032
|
[15] |
Nishigaki T, Sugihara S, Kobayashi K, et al. Fractionation of phosphorus in soils with different geological and soil physicochemical properties in Southern Tanzania[J]. Soil Science and Plant Nutrition, 2018, 64(3): 291−299. doi: 10.1080/00380768.2018.1436406
|
[16] |
Petersen G W, Corey R B. A modified change and Jackson procedure for routine fractionation of inorganic soil phosphates[J]. Soil Science Society of America Journal, 1966, 30(5): 563−565. doi: 10.2136/sssaj1966.03615995003000050012x
|
[17] |
蒋柏藩, 顾益初. 石灰性土壤无机磷分级体系的研究[J]. 中国农业科学, 1989, 22(3): 58−66. doi: 10.3321/j.issn:0578-1752.1989.03.012
Jiang B F, Gu Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils[J]. Scientia Agricultura Sinica, 1989, 22(3): 58−66. doi: 10.3321/j.issn:0578-1752.1989.03.012
|
[18] |
张宁, 姜云军, 郭秀平, 等. 碳酸氢钠浸提-基体分离-电感耦合等离子体质谱法测定石灰性土壤中有效磷[J]. 理化检验(化学分册), 2019, 55(2): 214−217. doi: 10.11973/lhjy-hx201902017
Zhang N, Jiang Y J, Guo X P, et al. Determination of available phosphorus in calcareous soil by sodium bicarbonate extraction-matrix separation-inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(2): 214−217. doi: 10.11973/lhjy-hx201902017
|
[19] |
高素珍, 刘俊红. 碱性土壤有效磷测定的影响因素及其控制[J]. 浙江农业科学, 2016, 57(11): 1837−1838, 1847. doi: 10.16178/j.issn.0528-9017.20161124
Gao S Z, Liu J H. Influencing factors and control of available phosphorus determination in alkaline soil[J]. Journal of Zhejiang Agricultural Sciences, 2016, 57(11): 1837−1838, 1847. doi: 10.16178/j.issn.0528-9017.20161124
|
[20] |
刘妹, 顾铁新, 程志中, 等. 10个土壤有效态成分分析标准物质研制[J]. 岩矿测试, 2011, 30(5): 536−544. doi: 10.15898/j.cnki.11-2131/td.2011.05.021
Liu M, Gu T X, Cheng Z Z, et al. Ten reference materials for available nutrients of agricultural soils[J]. Rock and Mineral Analysis, 2011, 30(5): 536−544. doi: 10.15898/j.cnki.11-2131/td.2011.05.021
|
[21] |
刘宏, 钱蜀, 秦青, 等. 电感耦合等离子体发射光谱法测定环境水样中总磷的干扰及消除[J]. 四川环境, 2014, 33(1): 71−76. doi: 10.14034/j.cnki.schj.2014.01.001
Liu H, Qian S, Qing Q, et al. Interference and elimination of determination of total phosphorus in environmental water samples by inductively coupled plasma optical emission spectrometry[J]. Sichuan Environment, 2014, 33(1): 71−76. doi: 10.14034/j.cnki.schj.2014.01.001
|
[22] |
马兴娟, 费发源. ICP-AES法测定石灰性土壤中的有益元素有效磷[J]. 黑龙江农业科学, 2016(6): 42−45. doi: 10.11942/j.issn1002-2767.2016.06.0042
Ma X J, Fei F Y. Determination of useful element of the effective phosphorus in calcareous soil by ICP-AES[J]. Heilongjiang Agricultural Sciences, 2016(6): 42−45. doi: 10.11942/j.issn1002-2767.2016.06.0042
|
[23] |
Pätzold S, Leenen M, Frizen P, et al. Predicting plant available phosphorus using infrared spectroscopy with consideration for future mobile sensing applications in precision farming[J]. Precision Agriculture, 2019, 21: 1−25. doi: 10.1007/s11119-019-09693-3
|
[24] |
栾桂云. 中性、石灰性土壤有效磷的测定方法和注意事项[J]. 河南农业, 2013, 11(21): 21−22. doi: 10.3969/j.issn.1006-950X.2013.21.014
Luan G Y. Methods and precautions for the determination of available phosphorus in neutral and calcareous soils[J]. Agriculture of Henan, 2013, 11(21): 21−22. doi: 10.3969/j.issn.1006-950X.2013.21.014
|
[25] |
覃当麟, 黄芳, 秦小猛, 等. 电感耦合等离子体发射光谱法同时测定复合肥料中的有效磷和钾[J]. 磷肥与复肥, 2022, 37(1): 38−40, 46. doi: 10.3969/j.issn.1007-6220.2022.01.014
Qin D L, Huang F, Qin X M, et al. Simultaneous determination of available phosphorus and potassium in compound fertilizer by inductively coupled plasma emission spectrometry[J]. Phosphorus and Compound Fertilizer, 2022, 37(1): 38−40, 46. doi: 10.3969/j.issn.1007-6220.2022.01.014
|
[26] |
刘珂珂, 董学亮, 李果果, 等. 电感耦合等离子体原子发射光谱法测定石灰性土壤中有效磷[J]. 冶金分析, 2021, 41(9): 77−82. doi: 10.13228/j.boyuan.issn1000-7571.011370
Liu K K, Dong X L, Li G G, et al. Determination of available phosphorus in calcareous soil by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2021, 41(9): 77−82. doi: 10.13228/j.boyuan.issn1000-7571.011370
|
[27] |
梅连平, 刘晨曦, 李云东, 等. ICP-AES法测定碱性土壤中有效磷、速效钾[J]. 磷肥与复肥, 2021, 36(5): 34−35.
Mei L P, Liu C X, Li Y D, et al. Determination of effective P and available K in alkaline soil by ICP-AES method[J]. Phosphate & Compound Fertilizer, 2021, 36(5): 34−35.
|
[28] |
龚会蝶, 王雪艳, 王宇莹, 等. 磷肥品种和施用方式对灌耕灰漠土有效磷和无机磷形态的影响[J]. 西北农业学报, 2023, 32(5): 744−752. doi: 10.7606/j.issn.1004-1389.2023.05.010
Gong H D, Wang X Y, Wang Y Y, et al. Effects of phosphate fertilizer and application methods on Olsen-P and inorganic phosphorus form in irrigated grey desert soil[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2023, 32(5): 744−752. doi: 10.7606/j.issn.1004-1389.2023.05.010
|
[29] |
周向飞, 董兴隆, 赵晴. 碳酸氢钠浸提-稀盐酸酸化-ICP-AES法测试石灰性土壤有效磷[J]. 化工管理, 2023(8): 27−30. doi: 10.19900/j.cnki.ISSN1008-4800.2023.08.008
Zhou X F, Dong X L, Zhao Q. Determination of available phosphorus in calcareous soils by sodium bicarbonate extraction-bilute hydrochloric acid acidif ication-ICP-AES method[J]. Chemical Engineering Management, 2023(8): 27−30. doi: 10.19900/j.cnki.ISSN1008-4800.2023.08.008
|
[30] |
于汀汀, 朱云, 郭琳, 等. 溴酚蓝作酸碱指示剂分光光度法测定土壤中有效磷[J]. 岩矿测试, 2023, 42(1): 213−219. doi: 10.15898/j.cnki.11-2131/td.202203190056
Yu T T, Zhu Y, Guo L, et al. Spectrophotometric determination of available phosphorus in soil with bromophenol blue as an acid-base indicator[J]. Rock and Mineral Analysis, 2023, 42(1): 213−219. doi: 10.15898/j.cnki.11-2131/td.202203190056
|
[31] |
潘淑春, 王雪莲, 陈梅, 等. 全谱直读等离子体发射光谱法测定土壤中有效磷[J]. 矿产综合利用, 2015, 36(3): 59−61. doi: 10.3969/j.issn.1000-6532.2015.03.015
Pan S C, Wang X L, Chen M, et al. Determination of the effective phosphorus in soil by full spectrum direct reading plasma emission spectrometry[J]. Multipurpose Utilization of Mineral Resources, 2015, 36(3): 59−61. doi: 10.3969/j.issn.1000-6532.2015.03.015
|
[32] |
王俊杰, 王巧环. 基于Olsen法下电感耦合等离子体发射光谱仪(ICP-OES)测定土壤中的有效磷[J]. 中国土壤与肥料, 2023(9): 245−248. doi: 10.11838/sfsc.1673-6257.22468
Wang J J, Wang Q H. Determination of available phosphorus in soil using inductively coupled plasma optical emission spectrometer (ICP-OES) based on Olsen method[J]. Soil and Fertilizer Sciences in China, 2023(9): 245−248. doi: 10.11838/sfsc.1673-6257.22468
|
1. |
宫雨欣,张陈圣文,朱文芳,陈佳,张光辉,祝晓霞,丁汀,黎辉煌,张天阳. 新型技术在小颗粒钻石快速排查中的应用. 中国宝玉石. 2024(02): 2-9+49 .
![]() | |
2. |
陈犁,朱红伟. 红外吸收光谱在钻石检验中的应用. 超硬材料工程. 2024(05): 68-72+79 .
![]() |