• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
CHEN Feifei,JIN Bin,YANG Mengna,et al. Determination of Trace Ti in High Calcium Carbonate Rocks by ICP-MS[J]. Rock and Mineral Analysis,2024,43(4):558−567. DOI: 10.15898/j.ykcs.202402280023
Citation: CHEN Feifei,JIN Bin,YANG Mengna,et al. Determination of Trace Ti in High Calcium Carbonate Rocks by ICP-MS[J]. Rock and Mineral Analysis,2024,43(4):558−567. DOI: 10.15898/j.ykcs.202402280023

Determination of Trace Ti in High Calcium Carbonate Rocks by ICP-MS

More Information
  • Received Date: February 27, 2024
  • Revised Date: May 23, 2024
  • Accepted Date: June 19, 2024
  • Available Online: August 08, 2024
  • The content of Ti in carbonate rocks is generally lower than 3.5mg/g, and most of it is below 1mg/g. X-ray fluorescence spectrometry (XRF), which is commonly used to measure Ti content in silicic rocks (usually more than 0.1%), cannot meet the requirements of accurate measurement of trace Ti in carbonate rocks. This paper reports on the attempts to test Ti in carbonate rock by inductively coupled plasma-mass spectrometry (ICP-MS), discusses and analyzes the interference of 5 test isotopes of Ti (46Ti, 47Ti, 48Ti, 49Ti, 50Ti) in carbonate solution matrix, and determines the suitable test isotope 48Ti. Then the ICP-MS method for the determination of trace Ti in carbonate rock is proposed. According to the method, the concentration of Ti in 5 first-class national standard materials was tested and corrected. The measured values were consistent with the certified values, and the relative standard deviation (RSD, n=10) was less than 7.3%. The concentration of Ti in the unknown carbonate sample solution was measured and corrected under the same experimental conditions, and this method was compared with the national standard method of diantipyrine methane spectrophotometry and inductively coupled plasma-optical emission spectrometry (ICP-OES) method, and the relative standard deviation with these two methods were less than the allowable limit. The recoveries were 83%−107%. This method is suitable for the determination of carbonate samples with 31%−56% CaO and 14−3346μg/g Ti, and provides a reference for the determination of trace Ti in carbonate rocks with high calcium and magnesium.

  • [1]
    Wang H J. New approach to the thermal properties of carbonate rocks in geothermal reservoirs: Molecular dynamics calculation and case studies[J]. Renewable Energy, 2022, 198: 861−871. doi: 10.1016/j.renene.2022.08.062
    [2]
    Wang H M, Zhou Q, Sheng J C, et al. Effect of long-term infiltration on porosity-permeability evolution in carbonate rocks: An online NMR coupling penetration test[J]. Journal of Hydrology, 2023, 129029(617): 1−14. doi: 10.1016/j.jhydrol.2022.129029
    [3]
    Zhang S Y, Shao M, Wang T, et al. Geochemistry of lacustrine carbonate rocks in Southwestern Qaidam: Implications of silicate weathering and carbon burial triggered by the uplift of the Tibetan Plateau[J]. International Journal of Coal Geology, 2023, 104167(265): 1−15. doi: 10.1016/j.coal.2022.104167
    [4]
    史冀忠, 牛亚卓, 许伟, 等. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680−693. doi: 10.13278/j.cnki.jjuese.20200091

    Shi J Z, Niu Y Z, Xu W, et al. Geochemical characteristics and sedimentary environment of carboniferous Baishan Formation carbonate in Shibanquanxi of Yingen—Ejin Banner Basin[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(3): 680−693. doi: 10.13278/j.cnki.jjuese.20200091
    [5]
    张连凯, 季宏兵, 刘秀明, 等. 热带地区碳酸盐岩上覆红色风化壳的成因机理及元素演化[J]. 中国地质, 2021, 48(2): 651−660. doi: 10.12029/gc20210221

    Zhang L K, Ji H B, Liu X M, et al. Genetic mechanism and elemental evolution of weathering laterite crust overlying carbonate rocks in tropical areas[J]. Geology in China, 2021, 48(2): 651−660. doi: 10.12029/gc20210221
    [6]
    Chen W, Ying Y C, Bai T, et al. In situ major and trace element analysis of magnetite from carbonatite-related complexes: Implications for petrogenesis and ore genesis[J]. Ore Geology Reviews, 2019, 107: 30−40. doi: 10.1016/j.oregeorev.2019.01.029
    [7]
    Levitskiy V I, Reznitsky L Z, Levitskiy I V. Geochemistry of carbonate rocks in the early Precambrian and Phanerozoic metamorphic complexes of East Siberia, North-West Russia, and Pamirs[J]. Geochemistry International, 2019, 57(4): 438−455. doi: 10.1134/S0016702919040074
    [8]
    Carlos R P J, Rafael C S, Eduardo C S N, et al. Influence of carbonate rocks on soil properties in the humid tropical climate of Atlantic forest, Rio de Janeiro–Brazil[J]. Journal of South American Earth Sciences, 2021, 103582(112): 1−11. doi: 10.1016/j.jsames.2021.103582
    [9]
    Wang Y J, Zhu W G, Zhong H, et al. Using trace elements of magnetite to constrain the origin of the Pingchuan hydrothermal low-Ti magnetite deposit in the Panxi area, SW China[J]. Acta Geochimica, 2019, 38(3): 376−390. doi: 10.1007/s11631-019-00332-2
    [10]
    《岩石矿物分析》编委会. 岩石矿物分析(第四版)[M]. 北京: 地质出版社, 2011: 105−115 (第二分册), 742−750(第一分册), 753−762(第二分册).

    The Editorial Committee of "Rock and Mineral Analysis".Rock and mineral analysis (The fourth edition)[M]. Beijing: Geological Publishing House, 2011: 105−115 (Vol.Ⅱ), 742−750(Vol.Ⅰ), 753−762(Vol.Ⅱ).
    [11]
    祁巍, 高延强, 宋苗, 等. 熔融制样-X射线荧光光谱法测定钛铁中钛磷硅锰铝[J]. 冶金分析, 2022, 42(3): 66−71. doi: 10.13228/j.boyuan.issn1000-7571.011534

    Qi W, Gao Y Q, Song M, et al. Determination of titanium, phosphorus, silicon, manganese and aluminum in ferrotitanium by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2022, 42(3): 66−71. doi: 10.13228/j.boyuan.issn1000-7571.011534
    [12]
    张延新, 李京, 刘斌, 等. 熔融制样-X射线荧光光谱法测定高碳铬铁中铬硅磷钛[J]. 冶金分析, 2022, 42(12): 77−82. doi: 10.13228/j.boyuan.issn1000-7571.011494

    Zhang Y X, Li J, Liu B, et al. Determination of chromium, silicon, phosphorus and titanium in high-carbon ferrochrome by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2022, 42(12): 77−82. doi: 10.13228/j.boyuan.issn1000-7571.011494
    [13]
    陈静, 高志军, 陈冲科, 等. X射线荧光光谱法分析地质样品的应用技巧[J]. 岩矿测试, 2015, 34(1): 91−98. doi: 10.15898/j.cnki.11-2131/td.2015.01.014

    Chen J, Gao Z J, Chen C K, et al. Application skills on determination of geological sample by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 91−98. doi: 10.15898/j.cnki.11-2131/td.2015.01.014
    [14]
    朱立军, 李景阳. 碳酸盐岩风化成土作用及其环境效应[M]. 北京: 地质出版社, 2004.

    Zhu L J, Li J Y. Weathering and environmental effects of carbonate rocks[M]. Beijing: Geological Publishing House, 2004.
    [15]
    兰叶芳, 任传建, 李小彩, 等. 黔西北毕节地区中二叠统碳酸盐岩岩石学、地球化学特征及意义[J]. 地球学报, 2022, 43(3): 309−324. doi: 10.3975/cagsb.2022.030301

    Lan Y F, Ren C J, Li X C, et al. Petrological and geochemical characteristics and their significance of middle Permian carbonate rocks in Bijie area, Northwestern Guizhou[J]. Acta Geoscientica Sinica, 2022, 43(3): 309−324. doi: 10.3975/cagsb.2022.030301
    [16]
    Lorraine T, Matthijs A S, Jamie C, et al. Rapid, paced metamorphism of blueschists (Syros, Greece) from laser-based zoned[J]. Chemical Geology, 2022, 121003(607): 1−14. doi: 10.1016/j.chemgeo.2022.121003
    [17]
    Salma I R V, Musthafa M M, Abdurahman K M, et al. Trace elemental fingerprinting of Ayurvedic medicine—Triphala Churna using XRF and ICPMS[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323: 1405−1412. doi: 10.1007/s10967-019-06909-8
    [18]
    Zhang W, Hu Z C, Liu Y S, et al. In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collectorinductively coupled plasma mass spectrometry[J]. Chemical Geology, 2019, 522: 16−25. doi: 10.1016/j.chemgeo.2019.04.027
    [19]
    Alejandro S G, Juan M M G, Jose M T L, et al. ICP-MS multielemental determination of metals potentially released from dental implants and articular prostheses in human biological fluids[J]. Analytical and Bioanalytical Chemistry, 2005, 382: 1001−1009. doi: 10.1007/s00216-005-3165-9
    [20]
    Yang K L, Jiang S J, Hwang T J. Determination of titanium and vanadium in water samples by inductively coupled plasma mass spectrometry with on-line preconcentration[J]. Journal of Analytical Atomic Spectrometry, 1996, 11: 139−143. doi: 10.1039/ja9961100139
    [21]
    Feng S C, Wu J F, Chen G. Determination of picomolar titanium in seawater by isotope dilution multicollector inductively coupled plasma mass spectrometer after Mg(OH)2 coprecipitation[J]. Analytical Chemistry, 2021, 93: 13118−13125. doi: 10.1021/acs.analchem.0c04381
    [22]
    Yu L J, Koirtyohann S R, Melvin L R, et al. Simultaneous determination of aluminium, titanium and vanadium in serum by electrothermal vaporization-inductively coupled plasma mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 1997, 12: 69−74. doi: 10.1039/A604797A
    [23]
    Fu L, Xie H L, Huang J H, et al. Determination of ultra-trace levels of titanium in human serum using inductively coupled plasma tandem mass spectrometry based on O2/H2 reaction gas[J]. Analytica Chimica Acta, 2021, 1165(338564): 1−7. doi: 10.1016/j.aca.2021.338564
    [24]
    Martin L, Anronin K, Oto M. Non-spectral interferences in single-particle ICP-MS analysis: An underestimated phenomenon[J]. Talanta, 2019, 202: 565−571. doi: 10.1016/j.talanta.2019.04.073
    [25]
    张楠, 郑智慷, 王家松, 等. 常压密闭微波消解-电感耦合等离子体质谱法测定磷矿石中的稀土元素[J]. 岩矿测试, 2024, 43(2): 366−374. doi: 10.15898/j.ykcs.202301110004

    Zhang N, Zheng Z K, Wang J S, et al. Determination of 15 rare earth elements in phosphate ores by inductively coupled plasma-mass spectrometry with atmospheric pressure closed microwave digestion[J]. Rock and Mineral Analysis, 2024, 43(2): 366−374. doi: 10.15898/j.ykcs.202301110004
    [26]
    Bussweiler Y, Giuliani A, Greig A, et al. Trace element analysis of high-Mg olivine by LA-ICP-MS-characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites[J]. Chemical Geology, 2019, 524: 136−157. doi: 10.1016/j.chemgeo.2019.06.019
    [27]
    Zhang W, Hu Z C, Günther D, et al. Direct lead isotope analysis in Hg-rich sulfides by LA-MC-ICP-MS with a gas exchange device and matrix-matched calibration[J]. Analytica Chimica Acta, 2016, 948: 9−18. doi: 10.1016/j.aca.2016.10.040
    [28]
    陈菲菲, 冉敬, 徐国栋, 等. 碳酸盐岩样品中镍和钪的电感耦合等离子体质谱分析与干扰校正方法[J]. 岩矿测试, 2021, 40(2): 187−195. doi: 10.15898/j.cnki.11-2131/td.202005310079

    Chen F F, Ran J, Xu G D, et al. Inductively coupled plasma-mass spectrometric analysis of nickel and scandium in carbonate rock samples and interference correction methods[J]. Rock and Mineral Analysis, 2021, 40(2): 187−195. doi: 10.15898/j.cnki.11-2131/td.202005310079
    [29]
    Sarmiento-González A, Encinar J R, Marchante-Gayón J M, et al. Titanium levels in the organs and blood of rate with a titanium implant, in the absence of wear, as determined by double-focusing ICP-MS[J]. Analytical & Bioanalytical Chemistry, 2009, 393: 335−343. doi: 10.1007/s00216-008-2449-2
    [30]
    李冰, 杨红霞. 电感耦合等离子体质谱原理和应用[M]. 北京: 地质出版社, 2005.

    Li B,Yang H X. Principle and Application of Inductively Coupled Plasma Mass Spectrometry[M]. Beijing: Geological Publishing House,2005.

Catalog

    Article views (210) PDF downloads (64) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return