Citation: | WANG Na,WU Lei,WANG Jiasong,et al. Determination of Uranium, Thorium and Potassium for Optically Stimulated Luminescence Dating by ICP-MS and XRF[J]. Rock and Mineral Analysis,2024,43(5):793−801. DOI: 10.15898/j.ykcs.202402280022 |
Optically stimulated luminescence (OSL) dating includes the measurement of the equivalent dose and the environmental dose rate. The accurate determination of uranium, thorium and potassium is an important step in ensuring the accurate calculation of the environmental dose rate. The commonly used measurement method is the combination of inductively coupled plasma-mass spectrometry/optical emission spectroscopy (ICP-MS/OES), but the determination of uranium, thorium and potassium can not be done at the same time, and the measurement time is long. In the research, two methods of ICP-MS and X-ray fluorescence spectrometry (XRF) measuring the three elements were compared. Using ICP-MS analysis, electronic dilution was used to reduce the potassium ions entering the detector, so that potassium ions were in the same order of magnitude as uranium and thorium ions. Thus, the simultaneous analysis of high content potassium and low content uranium and thorium was achieved. The detection limits for uranium, thorium, and potassium were 6.38ng/L, 8.52ng/L, and 926ng/L, respectively. The effects of closed acid dissolution method and open acid dissolution method on the determination of uranium, thorium, and potassium by ICP-MS method were studied. The two dissolution methods dissolved 10 sediment and soil standard substances, and the results of uranium, thorium, and potassium determination were accurate and reliable, with no significant difference in relative error, ranging from 0 to 9.33%. However, the operation of open acid dissolution method was simpler, and the sample processing time (about 9h) was much shorter than the closed acid dissolution method (about 60h). Therefore, open acid dissolution was selected to dissolve the sample in ICP-MS method. By XRF analysis, the relative errors for the determination of uranium, thorium and potassium in standard materials by pressed-powder pellets method were 4.78%−16.2%, 1.20%−13.3% and 0.00%−5.67%, respectively. ICP-MS and XRF were used to determine 20 sediment samples from Bohai Bay, and the relative deviation of the environmental dose rate was less than 6%. XRF has advantages in the measurement of potassium and is more suitable for luminescent samples with high potassium content. The ICP-MS method has a lower detection limit, and higher precision and accuracy for the determination of uranium and thorium. For ultra trace samples, this method provides more accurate measurement results.
[1] |
姚生海, 盖海龙, 刘炜, 等. 柴达木盆地北缘断裂(阿木尼克山段)构造地貌及晚第四纪活动速率研究[J]. 第四纪研究, 2020, 40(5): 1312−1322. doi: 10.11928/j.issn.1001-7410.2020.05.19
Yao S H, Gai H L, Liu W, et al. Tectonic geomorphology and late Quaternary slip rate of the Amunike segment, the North Qaidam thrust fault zone[J]. Quaternary Sciences, 2020, 40(5): 1312−1322. doi: 10.11928/j.issn.1001-7410.2020.05.19
|
[2] |
高磊, 隆浩. 长江三角洲晚第四纪陆-海交互地层的光释光年代学[J]. 地球环境学报, 2018, 9(6): 527−540. doi: 10.7515/JEE182046
Gao L, Long H. Optical dating of the land-sea interactive deposits of the Yangtze River Delta since the late Quaternary[J]. Journal of Earth Environment, 2018, 9(6): 527−540. doi: 10.7515/JEE182046
|
[3] |
张云鹏, 张家富, 阮秋荣, 等. 新疆吉仁台沟口遗址地貌背景与遗址形成过程[J]. 第四纪研究, 2021, 41(5): 1376−1393. doi: 10.11928/j.issn.1001-7410.2021.05.13
Zhang Y P, Zhang J F, Ruan Q R, et al. Geomorphological background and formation process of the Goukou site in Jirentai, Xinjiang[J]. Quaternary Sciences, 2021, 41(5): 1376−1393. doi: 10.11928/j.issn.1001-7410.2021.05.13
|
[4] |
姜兴钰, 马宏伟, 李琰, 等. 辽东湾沿海平原中西部晚更新世以来低速、快速沉积的差别及其时空分布特征[J]. 华北地质, 2022, 45(3): 22−28. doi: 10.19948/j12-1471/P.2022.03.04
Jiang X Y, Ma H W, Li Y, et al. Distinctive variations between slow- and rapid-sedimentations and their different spatiotemporal distributions in the central and western part of coastal plain of Lidaodong Bay since late Pleistocene[J]. North China Geology, 2022, 45(3): 22−28. doi: 10.19948/j12-1471/P.2022.03.04
|
[5] |
陈淑娥, 李虎侯, 庞奖励. 释光测年的研究简史及研究现状[J]. 西北大学学报(自然科学版), 2003, 33(2): 209−212. doi: 10.16152/j.cnki.xdxbzr.2003.02.022
Chen S E, Li H H, Pang J L. The advance of luminescence dating[J]. Journal of Northwest University (Natural Science Edition), 2003, 33(2): 209−212. doi: 10.16152/j.cnki.xdxbzr.2003.02.022
|
[6] |
Li G Q, Yan Z F, Song Y G, et al. A comprehensive dataset of luminescence chronologies and environmental proxy indices of loess-paleosol deposits across Asia[J]. Npj Climate and Atmospheric Science, 2024, 7: 1−13. doi: 10.1038/s41612-023-00555-4
|
[7] |
Gao L, Long H, Shen J, et al. Optical dating of Holocene tidal deposits from the southwestern coast of the South Yellow Sea using different grain-size quartz fractions[J]. Journal of Asian Earth Sciences, 2017(135): 155−165. doi: 10.1016/j.jseaes.2016.12.036
|
[8] |
张克旗, 吴中海, 吕同艳, 等. 光释光测年法——综述及进展[J]. 地质通报, 2015, 34(1): 183−203. doi: 10.3969/j.issn.1671-2552.2015.01.015
Zhang K Q, Wu Z H, Lyu T Y, et al. Review and progress of OSL dating[J]. Geological Bulletin of China, 2015, 34(1): 183−203. doi: 10.3969/j.issn.1671-2552.2015.01.015
|
[9] |
Ataiken M J. An Introduction to optical dating[M]. London: Oxford University Press, 1988: 39-44.
|
[10] |
赖忠平, 欧先交. 光释光测年基本流程[J]. 地理科学进展, 2013, 32(5): 683−693. doi: 10.11820/dlkxjz.2013.05.001
Lai Z P, Ou X J. Basic procedures of optically stimulated luminescence (OSL) dating[J]. Progress in Geography, 2013, 32(5): 683−693. doi: 10.11820/dlkxjz.2013.05.001
|
[11] |
Wintle A G, Murray A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J]. Radiation Measurements, 2006(41): 369−391. doi: 10.1016/j.radmeas.2005.11.001
|
[12] |
Duller G A T. Luminescence dating of Quaternary sediments: Recent advances[J]. Journal of Quaternary Science, 2004, 19(2): 183−192. doi: 10.1002/jqs.809
|
[13] |
Nian X M, Zhang W G, Qiu F Y, et al. Luminescence characteristics of quartz from Holocene delta deposits of the Yangtze River and their provenance implications[J]. Quaternary Geochronology, 2019, 49: 131−137. doi: 10.1016/j.quageo.2018.04.010
|
[14] |
Lehmann B, Valla P G, King G E, et al. Investigation of OSL surface exposure dating to reconstruct post-LIA glacier fluctuations in the French Alps (Mer de Glace, Mont Blanc massif)[J]. Quaternary Geochronology, 2018(44): 63−74. doi: 10.1016/j.quageo.2017.12.002
|
[15] |
Li Y, Tsukamoto S, Shang Z W, et al. Constraining the transgression history in the Bohai Coast China since the middle Pleistocene by luminescence dating[J]. Marine Geology, 2019(416): 1−17. doi: 10.1016/j.margeo.2019.105980
|
[16] |
Long Z R, Wang Z B, Tu H, et al. OSL and radiocarbon dating of a core from the Bohai Sea in China and implication for late Quaternary transgression pattern[J]. Quaternary Geochronology, 2022(70): 1−8. doi: 10.1016/j.quageo.2022.101308
|
[17] |
张克旗. 释光测年中环境剂量率影响因素研究[J]. 地质力学学报, 2012, 18(1): 62−71. doi: 10.3969/j.issn.1006-6616.2012.01.007
Zhang K Q. Quantitative calculations of environmental dose rate at different influencing factors in luminescence dating[J]. Journal of Geomechanics, 2012, 18(1): 62−71. doi: 10.3969/j.issn.1006-6616.2012.01.007
|
[18] |
秦亚丽, 陈喆, 吴伟明, 等. 光释光测年中铀、钍、钾的NAA分析[J]. 核电子学与探测技术, 2010, 30(12): 1653−1656. doi: 10.3969/j.issn.0258-0934.2010.12.025
Qin Y L, Chen Z, Wu W M, et al. Determination of U, Th and K for optically stimulated luminescence dating by NAA[J]. Nuclear Electronics & Detection Technology, 2010, 30(12): 1653−1656. doi: 10.3969/j.issn.0258-0934.2010.12.025
|
[19] |
陈敏, 张成江, 倪师军. 仪器中子活化法研究核设施周围土壤中的铀、钍、钾[J]. 核化学与放射化学, 2010, 32(5): 315−320.
Chen M, Zhang C J, Ni S J. Study on uranium, thorium, and potassium in soil around a nuclear installation by using INAA[J]. Journal of Nuclear and Radiochemisry, 2010, 32(5): 315−320.
|
[20] |
刘春茹, 黄静, 李建平, 等. X射线荧光光谱法测定水系沉积物ESR测年样品U、Th、K 含量[J]. 核技术, 2012, 35(11): 837−840.
Liu C R, Huang J, Li J P, et al. Sediment U, Th, K content analyzed using X-ray fluorescence spectrometry for ESR dating samples[J]. Nuclear Techniques, 2012, 35(11): 837−840.
|
[21] |
李多宏, 张继龙, 周志波, 等. XRF法分析铀矿比对样品中的40K[J]. 铀矿地质, 2018, 34(1): 46−52. doi: 10.3969/j.issn.1000-0658.2018.01.008
Li D H, Zhang J L, Zhou Z B, et al. Determination of 40K in comparison uranium ore sample by X-ray fluorescence spectrometry[J]. Uranium Geology, 2018, 34(1): 46−52. doi: 10.3969/j.issn.1000-0658.2018.01.008
|
[22] |
经辉. X射线荧光光谱法同时测定矿石中铀和钍[J]. 中国无机分析化学, 2015, 5(3): 34−40. doi: 10.3969/j.issn.2095-1035.2015.03.008
Jing H. Simultaneous determination of uranium and thorium in ores by X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3): 34−40. doi: 10.3969/j.issn.2095-1035.2015.03.008
|
[23] |
卜道露, 杨旭, 李高湖, 等. ICP-MS测定地球化学样品中钍铀等14种元素[J]. 化学研究与应用, 2017, 29(8): 1254−1257. doi: 10.3969/j.issn.1004-1656.2017.08.028
Bu D L, Yang X, Li G H, et al. Determination of 14 elements including thorium, uranium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Chemical Research and Application, 2017, 29(8): 1254−1257. doi: 10.3969/j.issn.1004-1656.2017.08.028
|
[24] |
袁影, 王思广. 电感耦合等离子体质谱法测定单晶铜中痕量放射性核素钍和铀的含量[J]. 核技术, 2018, 41(9): 301−306. doi: 10.11889/j.0253-3219.2018.hjs.41.090301
Yuan Y, Wang S G. Determination of thorium and uranium in copper using inductively coupled plasma mass spectrometry[J]. Nuclear Techniques, 2018, 41(9): 301−306. doi: 10.11889/j.0253-3219.2018.hjs.41.090301
|
[25] |
宋茂生, 张鑫, 范鹏飞. 阴离子交换分离-电感耦合等离子体质谱法测定钛铁矿中的铀、钍[J]. 理化检验(化学分册), 2020, 56(5): 650−654. doi: 10.11973/lhjy-hx202006005
Song M S, Zhang X, Fan P F. ICP-MS determination of uranium and thorium in ilmenite with separation by anion-exchange[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(5): 650−654. doi: 10.11973/lhjy-hx202006005
|
[26] |
王家松, 王力强, 王娜, 等. 偏硼酸锂熔融分解锆英砂的实验条件优化研究[J]. 华北地质, 2022, 45(4): 48−52. doi: 10.19948/j.12-1471/P.2022.04.06
Wang J S, Wang L Q, Wang N, et al. Optimization of experimental conditions for melting decomposition of zircon sands by lithium metaborate[J]. North China Geology, 2022, 45(4): 48−52. doi: 10.19948/j.12-1471/P.2022.04.06
|
[27] |
张莉娟, 方蓬达, 王力强, 等. 微波消解-电感耦合等离子体发射光谱法测定砂岩型铀矿中的铀钍[J]. 岩矿测试, 2022, 41(5): 798−805. doi: 10.15898j.cnki.11-2131/td.202202170022
Zhang L J, Fang P D, Wang L Q, et al. Determination of uranium and thorium in sandstone uranium deposits by inductively coupled plasma-optical emission spectrometrywith microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(5): 798−805. doi: 10.15898j.cnki.11-2131/td.202202170022
|
[28] |
王小强. 电感耦合等离子体发射光谱法同时测定长石矿物中钾钠钙镁铝钛铁[J]. 岩矿测试, 2012, 31(3): 442−445. doi: 10.3969/j.issn.0254-5357.2012.03.011
Wang X Q. Simultaneous quantification of K, Na, Ca, Mg, Al, Ti and Fe in feldspar samples by inductively coupled plasma atomic emission spectrometry[J]. Rock and Mineral Analysis, 2012, 31(3): 442−445. doi: 10.3969/j.issn.0254-5357.2012.03.011
|
[29] |
罗居德, 文雯, 杜金花, 等. 光谱-质谱联用技术测定第四纪沉积物中铀、钍和钾[J]. 第四纪研究, 2022, 42(5): 1420−1429. doi: 10.11928/j.issn.1001-7410.2022.05.15
Luo J D, Wen W, Du J H, et al. Determination of U, Th and K for Quaternary sediments by inductively coupled plasma atomic emission spectrometry-mass spectro-metry[J]. Quaternary Sciences, 2022, 42(5): 1420−1429. doi: 10.11928/j.issn.1001-7410.2022.05.15
|
[30] |
刘环, 康佳红, 王玉学. 碱熔-电感耦合等离子体质谱法测定地质样品中铍铯镓铊铌钽锆铪铀钍[J]. 冶金分析, 2019, 39(3): 26−32. doi: 10.13228/j.boyuan.issn1000G7571.010574
Liu H, Kang J H, Wang Y X. Determination of beryllium, cesium, gallium, thallium, niobium, tantalum, zirconium, hafnium, uranium and thorium in geological sample by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(3): 26−32. doi: 10.13228/j.boyuan.issn1000G7571.010574
|
[31] |
曾江萍, 李小莉, 张楠, 等. 粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟[J]. 岩矿测试, 2019, 38(1): 71−76. doi: 10.5898/j.nki.11-2131/td.01804060038
Zeng J P, Li X L, Zhang N, et al. Determination of high concentration of fluorine in lithium mica by X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2019, 38(1): 71−76. doi: 10.5898/j.nki.11-2131/td.01804060038
|
[32] |
张楠, 徐铁民, 吴良英, 等. 微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J]. 岩矿测试, 2018, 37(6): 644−649. doi: 10.15898/j.cnki.11-2131/td.201803160023
Zhang N, Xu T M, Wu L Y, et al. Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644−649. doi: 10.15898/j.cnki.11-2131/td.201803160023
|
1. |
宫雨欣,张陈圣文,朱文芳,陈佳,张光辉,祝晓霞,丁汀,黎辉煌,张天阳. 新型技术在小颗粒钻石快速排查中的应用. 中国宝玉石. 2024(02): 2-9+49 .
![]() | |
2. |
陈犁,朱红伟. 红外吸收光谱在钻石检验中的应用. 超硬材料工程. 2024(05): 68-72+79 .
![]() |