Citation: | JIANG Li,KANG Zhiqiang,LIANG Yueming,et al. Optimization of Extraction Method for Easily Extractable Glomalin-Related Soil Protein from Calcareous Soil[J]. Rock and Mineral Analysis,2024,43(4):582−591. DOI: 10.15898/j.ykcs.202402060015 |
Glomalin-related soil protein (GRSP) secreted by arbuscular mycorrhizal fungi is widely distributed worldwide, has stable properties and is not easily decomposed, which is an important component of soil organic matter. Extracting high quality GRSP is important for in-depth research on organic carbon sinks in calcareous soil from karst areas. However, in previous studies, the mechanism of GRSP in organic matter could not be further studied due to low extraction yield, insufficient extraction and non-specific products. Therefore, the high extraction amount of GRSP is of great significance to explore the formation and stabilization mechanism of organic matter in calcareous soil. This experiment selected four types of calcareous soil from karst areas: black, brown, yellow and red calcareous soil. By using orthogonal experiments of temperature and time, the optimal extraction conditions for easily extractable glomalin-related soil protein (EE-GRSP) related to particulate organic matter (POM) and mineral-associated organic matter (MAOM) in calcareous soil were selected. The experimental results showed that the highest extraction amount of EE-GRSP was achieved when POM and MAOM were extracted at 123℃ and 80min. After application into the four types of calcareous soil, the EE-GRSP contents increased from 4.6% to 34.2%. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202402060015.
[1] |
Chen L, Fang K, Wei B, et al. Soil carbon persistence governed by plant input and mineral protection at regional and global scales[J]. Ecology Letters, 2021, 24(5): 1018−1028. doi: 10.1111/ele.13723
|
[2] |
李大通, 罗雁. 中国碳酸盐岩分布面积测量[J]. 中国岩溶, 1983, 2(2): 147−150.
Li D T, Luo Y. Measurement of carbonate rocks distribution area in China[J]. Carsologica Sinica, 1983, 2(2): 147−150.
|
[3] |
李强. 岩溶土壤有机碳库分配、更新及其维持的微生物机制[J]. 微生物学报, 2022, 62(6): 2188−2197. doi: 10.13343/j.cnki.wsxb.20220010
Li Q. Microbial mechanism on distribution, renewal, and maintenance of soil organic carbon pool in karst area[J]. Acta Microbiologica Sinica, 2022, 62(6): 2188−2197. doi: 10.13343/j.cnki.wsxb.20220010
|
[4] |
程子捷, 陈志, 纪超, 等. 基于Citespace的国内外碳汇研究热点与前沿分析[J]. 环境与发展, 2023, 35(6): 18−27. doi: 10.16647/j.cnki.cn15-1369/X
Cheng Z J, Chen Z, Ji C, et al. Research progress and frontier analysis of carbon sink at home and abroad based on Citespace[J]. Environment and Development, 2023, 35(6): 18−27. doi: 10.16647/j.cnki.cn15-1369/X
|
[5] |
王应琼, 温庆忠, 王昌命, 等. 基于文献计量分析的生态系统碳汇现状研究[J]. 林业调查规划, 2024, 49(1): 98−107. doi: 10.3969/j.issn.1671-3168.2024.01.018
Wang Y Q, Wen Q Z, Wang C M, et al. Carbon sequestration of ecosystem based on bibliometric analysis[J]. Forest Inventory and Planning, 2024, 49(1): 98−107. doi: 10.3969/j.issn.1671-3168.2024.01.018
|
[6] |
田慧, 刘晓蕾, 盖京苹, 等. 球囊霉素及其作用研究进展[J]. 土壤通报, 2009, 40(5): 1215−1220. doi: 10.19336/j.cnki.trtb
Tian H, Liu X L, Gai J P, et al. Review of glomalin-related soil protein and its function[J]. Chinese Journal of Soil Science, 2009, 40(5): 1215−1220. doi: 10.19336/j.cnki.trtb
|
[7] |
Yan J H, Li Q, Hu L A, et al. Response of microbial communities and their metabolic functions to calcareous succession process[J]. Science of the Total Environment, 2022, 825: 154020. doi: 10.1016/j.scitotenv.2022.154020
|
[8] |
王建, 周紫燕, 凌婉婷. 球囊霉素相关土壤蛋白的分布及环境功能研究进展[J]. 应用生态学报, 2016, 27(2): 634−642. doi: 10.13287/j.1001-9332.201602.028
Wang J, Zhou Z Y, Ling W T. Distribution and environmental function of glomalin-related soil protein: A review[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 634−642. doi: 10.13287/j.1001-9332.201602.028
|
[9] |
Rillig M C. Arbuscular mycorrhizae, glomalin, and soil aggregation[J]. Canadian Journal of Soil Science, 2004, 84(4): 355−363. doi: 10.4141/S04-003
|
[10] |
郭雪佳. 球囊霉素相关土壤蛋白的分离纯化及性质分析[D]. 武汉: 华中农业大学, 2022: 1–69.
Guo X J. Purification and characterization of glomalin-related soil protein[D]. Wuhan: Huazhong Agricultural University, 2022: 1–69.
|
[11] |
柴立伟, 刘梦娇, 蒋大林, 等. 北京市不同地区土壤中的球囊霉素荧光特征及其与土壤理化性质的关系[J]. 环境科学, 2016, 37(12): 4806−4814. doi: 10.13227/j.hjkx.201606113
Chai L W, Liu M J, Jiang D L, et al. Fluorescence properties of glomalin and its relationship with soil physicochemical characteristics in different regions of Beijing[J]. Environmental Science, 2016, 37(12): 4806−4814. doi: 10.13227/j.hjkx.201606113
|
[12] |
Zhang Z, Wang Q, Wang H, et al. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP)[J]. Science of the Total Environment, 2017, 581−582(1): 657−665. doi: 10.1016/j.scitotenv.2016.12.176
|
[13] |
Zhang J, Li J, Ma L, et al. Accumulation of glomalin-related soil protein benefits soil carbon sequestration: Tropical coastal forest restoration experiences[J]. Land Degradation & Development, 2022, 33(10): 1541−1551. doi: 10.1002/ldr.4192
|
[14] |
Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 198(10): 97−107.
|
[15] |
Zhou W, Sun X, Li S, et al. Effects of organic mulching on soil aggregate stability and aggregate binding agents in an urban forest in Beijing, China[J]. Journal of Forestry Research, 2022, 33(3): 1083−1094. doi: 10.1007/s11676-021-01402-z
|
[16] |
Li Y, Xu J, Hu J, et al. Arbuscular mycorrhizal fungi and glomalin play a crucial role in soil aggregate stability in Pb-contaminated soil[J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 5029. doi: 10.3390/ijerph19095029
|
[17] |
Ji L, Tan W, Chen X. Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress conditions[J]. Soil and Tillage Research, 2019, 185: 1−8. doi: 10.1016/j.still.2018.08.010
|
[18] |
Bedini S, Pellegrino E, Avio L, et al. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices[J]. Soil Biology and Biochemistry, 2009, 41(7): 1491−1496. doi: 10.1016/j.soilbio.2009.04.005
|
[19] |
张梦歌, 石兆勇, 杨梅, 等. 热带山地雨林土壤球囊霉素的分布特征[J]. 生态环境学报, 2020, 29(3): 457−463. doi: 10.16258/j.cnki.1674-5906.2020.03.004
Zhang M G, Shi Z Y, Yang M, et al. Elevational distribution of glomalin-rated soil proteins in a tropical montane rain forest[J]. Ecology and Environment Science, 2020, 29(3): 457−463. doi: 10.16258/j.cnki.1674-5906.2020.03.004
|
[20] |
杨梅, 石兆勇, 卢世川, 等. 增温对青藏高原草地生态系统土壤球囊霉素含量的影响[J]. 生态环境学报, 2020, 29(4): 650−656. doi: 10.16258/j.cnki.1674-5906.2020.04.002
Yang M, Shi Z Y, Lu S C, et al. Effect of warming on soil glomalin in grassland of the Qinghai—Tibet Plateau[J]. Ecology and Environment Science, 2020, 29(4): 650−656. doi: 10.16258/j.cnki.1674-5906.2020.04.002
|
[21] |
Jing H, Meng M, Wang G L, et al. Aggregate binding agents improve soil aggregate stability in Robinia pseudoacacia forests along a climatic gradient on the Loess Plateau, China[J]. Journal of Arid Land, 2021, 13(2): 165−174. doi: 10.1007/s40333-021-0002-8
|
[22] |
Li T, Yuan Y, Mou Z, et al. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration[J]. Global Change Biology, 2023, 29(2): 533−546. doi: 10.1111/GCB.16467
|
[23] |
王琼. 城市森林球囊霉素相关土壤蛋白特征差异研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2019: 1–186.
Wang Q. Variation of glomalin-related soil protein characteristics in urban forest in China[D]. Changchun: University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences), 2019: 1–186.
|
[24] |
权常欣, 马玲玲, 林钊凯, 等. 广东省森林球囊霉素相关土壤蛋白含量及影响因素[J]. 生态环境学报, 2020, 29(2): 240−249. doi: 10.16258/j.cnki.1674-5906.2020.02.004
Quan C X, Ma L L, Lin Z K, et al. Patterns and influence factors of glomalin-related soil protein in Guangdong forests[J]. Ecology and Environment Science, 2020, 29(2): 240−249. doi: 10.16258/j.cnki.1674-5906.2020.02.004
|
[25] |
Liu H, Wang X, Liang C, et al. Glomalin-related soil protein affects soil aggregation and recovery of soil nutrient following natural revegetation on the Loess Plateau[J]. Geoderma, 2020, 357: 113921. doi: 10.1016/j.geoderma.2019.113921
|
[26] |
邸涵悦, 郝好鑫, 孙兆祥, 等. 不同演替阶段下球囊霉素相关土壤蛋白对团聚体稳定性的影响[J]. 生态环境学报, 2021, 30(4): 718−725. doi: 10.16258/j.cnki.1674-5906
Di H Y, Hao H X, Sun Z X, et al. Effects of glomalin-related soil protein on the stability of aggregates at different succession stages[J]. Ecology and Environ-mental Sciences, 2021, 30(4): 718−725. doi: 10.16258/j.cnki.1674-5906
|
[27] |
甘佳伟, 韩晓增, 邹文秀. 球囊霉素及其在土壤生态系统中的作用[J]. 土壤与作物, 2022, 11(1): 41−53. doi: 10.11689/j.issn.2095-2961.2022.01.005
Gan J W, Han X Z, Zou W X. Glomalin and its roles in soil ecosystem: A review[J]. Soils and Crops, 2022, 11(1): 41−53. doi: 10.11689/j.issn.2095-2961.2022.01.005
|
[28] |
张静, 唐旭利, 郑克举, 等. 赤红壤地区森林土壤球囊霉素相关蛋白测定方法[J]. 生态学杂志, 2014, 33(1): 249−258. doi: 10.13292/j.1000-4890.20131220.0002
Zhang J, Tang X L, Zheng K J, et al. An improved procedure for glomalin-related soil protein measurement in subtropical forest[J]. Chinese Journal of Ecology, 2014, 33(1): 249−258. doi: 10.13292/j.1000-4890.20131220.0002
|
[29] |
高瑞, 牛伊宁, 何仁元, 等. 不同种植年限苜蓿地球囊霉素相关土壤蛋白含量及其影响因素[J]. 草业科学, 2024, 41(3): 700−708. doi: 10.11829/j.issn.1001-0629.2022-0922
Gao R, Niu Y N, He R Y, et al. Content and factors influencing glomalin-related soil protein of alfalfa fields at different growing ages[J]. Pratacultural Science, 2024, 41(3): 700−708. doi: 10.11829/j.issn.1001-0629.2022-0922
|
[30] |
高瑞. 陇中黄土丘陵区长期种植紫花苜蓿土壤AMF群落结构及多样性研究[D]. 兰州: 甘肃农业大学, 2023: 1–58.
Gao R. Study on AMF community structure and diversity of long-term planted Alfalfa soil in the loess hilly region of Central Gansu[D]. Lanzhou: Gansu Agricultural University, 2023: 1–58.
|
[31] |
王国禧, 王萍, 刘亚龙, 等. 球囊霉素在土壤团聚体中的分布特征及影响因素的Meta分析[J]. 土壤学报, 2024, 61(4): 1147−1155. doi: 10.11766/trxb202301170024
Wang G X, Wang P, Liu Y L, et al. Distribution characteristics and influencing factors of glomalin in soil aggregates: A meta-analysis[J]. Acta Pedologica Sinica, 2024, 61(4): 1147−1155. doi: 10.11766/trxb202301170024
|
[32] |
Wei Q, Gunina A, Kuzyakov Y, et al. Contributions of mycorrhizal fungi to soil aggregate formation during subalpine forest succession[J]. Catena, 2023, 221: 10680. doi: 10.1016/j.catena.2022.106800
|
[33] |
Tang Q, Li Q, Tong L, et al. Rhizospheric soil organic carbon accumulated but its molecular groups redistributed via rhizospheric soil microorganisms along multi-root Cerasus humilis plantation chronosequence at the karst rocky desertification control area[J]. Environmental Science and Pollution Research, 2023, 30(5): 72993−73007.
|
[34] |
Angst G, Mueller K E, Castellano M J, et al. Unlocking complex soil systems as carbon sinks: Multi-pool management as the key[J]. Nature Communications, 2023, 14(1): 2967. doi: 10.1038/s41467-023-38700-5
|
[35] |
Yuan B, Li H, Hong H, et al. Immobilization of lead(Ⅱ) and zinc(Ⅱ) onto glomalin-related soil protein (GRSP): Adsorption properties and interaction mechanisms[J]. Ecotoxicology and Environmental Safety, 2022, 236: 113489. doi: 10.1016/j.ecoenv.2022.113489
|
[36] |
Cissé G, Essi M, Nicolas M, et al. Bradford quantification of glomalin-related soil protein in coloured extracts of forest soils[J]. Geoderma, 2020, 372(5): 114394. doi: 10.1016/j.geoderma.2020.114394
|
[37] |
欧阳永忠. 分光光度法在岩矿元素测试的应用分析[J]. 中国金属通报, 2022, 30(6): 237−239. doi: 10.3969/j.issn.1672-1667.2022.11.078
Ouyang Y Z. Application of spectrophotometric method for testing elements in mineral and rock[J]. China Metal Bulletin, 2022, 30(6): 237−239. doi: 10.3969/j.issn.1672-1667.2022.11.078
|
[38] |
Koide R T, Peoples M S. Behavior of Bradford-reactive substances is consistent with predictions for glomalin[J]. Applied Soil Ecology, 2013, 63(9): 8−14. doi: 10.1016/j.apsoil.2012.09.015
|
[39] |
温云杰, 刁风伟, 高敏, 等. 有机物料与土壤质地对土壤球囊霉素的影响[J]. 山西农业科学, 2022, 50(8): 1176−1183. doi: 10.3969/j.issn.1002-2481.2022.08.15
Wen Y J, Diao F W, Gao M, et al. Influence of organic amendments types and soil texture on soil glomalin[J]. Journal of Shanxi Agricultural Sciences, 2022, 50(8): 1176−1183. doi: 10.3969/j.issn.1002-2481.2022.08.15
|
[40] |
舒宝生, 万勇, 汪晓红. 关于热力学中热力学能和热力学焓的讨论[J]. 黄冈师范学院学报, 2020, 40(3): 108−110. doi: 10.3969/j.issn.2096-7020.2020.03.21
Shu B S, Wan Y, Wang X H. Understanding about thermodynamic energy and thermodynamic enthalpy[J]. Journal of Huanggang Normal University, 2020, 40(3): 108−110. doi: 10.3969/j.issn.2096-7020.2020.03.21
|
[41] |
谢小林, 许朋阳, 朱红惠, 等. 球囊霉素相关土壤蛋白的提取条件[J]. 菌物学报, 2011, 30(1): 92−99. doi: 10.13346/j.mycosystema.2011.01.010
Xie X L, Xu P Y, Zhu H H, et al. Extraction conditions of glomalin-related soil protein[J]. Mycosystema, 2011, 30(1): 92−99. doi: 10.13346/j.mycosystema.2011.01.010
|
[42] |
任闻达. AM真菌和物种丰富度调控斑块异质性土壤理化性质研究[D]. 贵阳: 贵州大学, 2023: 1–81.
Ren W D. AM fungi and species richness control soil physicalchemical properties relating to heterogeneity conditions[D]. Guiyang: Guizhou University, 2023: 1–81.
|
[43] |
张治伟, 许娟娟, 严焕德, 等. 海拔与岩性变异对石灰岩发育土壤黏土矿物组成的影响[J]. 土壤学报, 2017, 54(2): 535−542. doi: 10.11766/trxb201607250297
Zhang Z W, Xu J J, Yan H D, et al. Effects of elevation and lithology on clay mineral composition of soils derived from limestone[J]. Acta Pedologica Sinica, 2017, 54(2): 535−542. doi: 10.11766/trxb201607250297
|
[44] |
顾新运, 许冀泉. 中国土壤胶体研究 Ⅴ. 滇桂地区石灰岩发育的三种土壤的粘土矿物组成和演变[J]. 土壤学报, 1963, 11(4): 411−416.
Gu X Y, Xu J Q. Soil colloid researches Ⅴ. Clay minerals and their transformations in Rendzina, Terra Fusca and Terra Rossa of Yunnan and Kwangsi[J]. Acta Pedologica Sinica, 1963, 11(4): 411−416.
|
[45] |
胡清菁, 张超兰, 靳振江, 等. 铅锌矿尾砂重金属污染物对不同土地利用类型土壤性质影响的典范对应分析[J]. 岩矿测试, 2014, 33(5): 714−722. doi: 10.15898/j.cnki.11-2131/td
Hu Q J, Zhang C L, Jin Z J, et al. Canonical correspondence analysis for soil properties and heavy metal pollution from Pb-Zn mine tailings in different land use types[J]. Rock and Mineral Analysis, 2014, 33(5): 714−722. doi: 10.15898/j.cnki.11-2131/td
|
[46] |
何开平, 杜鹏, 吴强盛. 球囊霉素相关土壤蛋白提取条件的优化[J]. 长江大学学报(自科版), 2015, 12(33): 25−28,5. doi: 10.16772/j.cnki.1673-1409.2015.33.016
He K P, Du P, Wu Q S. Optimization of extraction techniques for glomalin-related soil protein[J]. Journal of Yangtze University (Natural Science Edition), 2015, 12(33): 25−28,5. doi: 10.16772/j.cnki.1673-1409.2015.33.016
|
[47] |
沈育伊, 滕秋梅, 徐广平, 等. 桂林会仙岩溶湿地土地利用方式对球囊霉素相关土壤蛋白分布的影响[J]. 地球学报, 2022, 43(4): 491−501. doi: 10.3975/cagsb.2022.012701
Shen Y Y, Teng Q M, Xu G P, et al. Effects of land use type on distribution of glomalin-related soil protein in the Huixian karst wetland, Guilin[J]. Acta Geoscientica Sinica, 2022, 43(4): 491−501. doi: 10.3975/cagsb.2022.012701
|
[48] |
Angst G, Mueller K E, Nierop K G J, et al. Plant-or microbial-derived? A review on the molecular composition of stabilized soil organic matter[J]. Soil Biology and Biochemistry, 2021, 156: 108189. doi: 10.1016/j.soilbio.2021.108189
|
[49] |
Wang Q, Chen J, Chen S, et al. Terrestrial-derived soil protein in coastal water: Metal sequestration mechanism and ecological function[J]. Journal of Hazardous Materials, 2020, 386: 121655. doi: 10.1016/j.jhazmat.2019.121655
|