• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
JIANG Aosong,WU Longhua,LI Zhu. Application of Energy Dispersive X-ray Fluorescence Spectroscopy in Analysis of Heavy Metals in Soil: A Review[J]. Rock and Mineral Analysis,2024,43(4):659−675. DOI: 10.15898/j.ykcs.202312230186
Citation: JIANG Aosong,WU Longhua,LI Zhu. Application of Energy Dispersive X-ray Fluorescence Spectroscopy in Analysis of Heavy Metals in Soil: A Review[J]. Rock and Mineral Analysis,2024,43(4):659−675. DOI: 10.15898/j.ykcs.202312230186

Application of Energy Dispersive X-ray Fluorescence Spectroscopy in Analysis of Heavy Metals in Soil: A Review

More Information
  • Received Date: December 22, 2023
  • Revised Date: May 09, 2024
  • Accepted Date: June 05, 2024
  • Available Online: July 24, 2024
  • With the process of urbanization and industrialization, heavy metals enter the ecological environment through various pathways and accumulate in large quantities in the soil, causing potential risks to soil environmental health. In recent years, with the development of energy dispersive X-ray fluorescence spectroscopy (ED-XRF), the detection limit of the instrument has been significantly reduced, and it can be effectively applied to the detection of various heavy metals in soil, and is gradually becoming an effective tool for determining the concentration of heavy metals in the soil environment. However, the complexity of the soil matrix and the limitations of the instrument itself will lead to problems such as low accuracy and precision in the determination of target heavy metals by ED-XRF, such as the type and particle size of soil samples and the noise in the instrument and the environment; there are also certain difficulties in the establishment of quantitative analysis model methods, which are still not well applied to laboratories and other environments with high data quality requirements. In this paper, we summarize the application and research progress of XRF in the field of soil heavy metal detection, explore and analyze the influence of different soil sample states and detection conditions on the detection accuracy of ED-XRF instruments, sort out the main pretreatment methods of ED-XRF spectroscopy and the establishment process of quantitative analysis models, and introduce and analyze the application potential of ED-XRF in evaluating the effectiveness of soil heavy metals. At present, the soil sample preparation procedures applied to ED-XRF detection have been relatively mature, and the opinions of scholars on how to reduce the impact of soil matrix effects on the operation methods are relatively unanimous, that is, to use dry samples, low particle size or pressed soil samples as much as possible, and there is still some room for optimization in the processing and analysis of detection data. Therefore, the current mainstream focus is on combining the advantages of different algorithms for the preprocessing analysis of ED-XRF spectroscopy and the establishment of quantitative analysis models to improve the accuracy of ED-XRF detection. At the same time, ED-XRF detection studies on different types of soils only highlighted the differences in the phenomenon, and did not clearly explore the underlying mechanisms. In the future, it is important to continue to explore the causes and magnitude of different matrix effects in various types of soils, and to optimize and improve the quantitative analysis model of ED-XRF spectroscopy; the prediction of the effectiveness of heavy metals in soil through multiple regression analysis is also a field that scholars should focus on.

  • [1]
    杨正标, 何青青, 王珂, 等. 便携式XRF在污染地块土壤金属元素调查中的应用[J]. 环境监控与预警, 2023, 15(1): 23−26, 51. doi: 10.3969/j.issn.1674-6732.2023.01.004

    Yang Z B, He Q Q, Wang K, et al. Application of portable XRF in investigation of metal elements in contaminated soil[J]. Environmental Monitoring and Early Warning, 2023, 15(1): 23−26, 51. doi: 10.3969/j.issn.1674-6732.2023.01.004
    [2]
    姚真真, 李玲, 张志扬, 等. 我国土壤元素分析方法标准体系现状研究[J]. 农产品质量与安全, 2019(5): 69−74. doi: 10.3969/j.issn.1674-8255.2019.05.014

    Yao Z Z, Li L, Zhang Z Y, et al. Research on the status quo of standard system of soil element analysis methods in China[J]. Quality and Safety of Agricultural Products, 2019(5): 69−74. doi: 10.3969/j.issn.1674-8255.2019.05.014
    [3]
    李冰, 周剑雄, 詹秀春. 无机多元素现代仪器分析技术[J]. 地质学报, 2011, 85(11): 1878−1916. doi: 11-1951/P.20111025.0834.003

    Li B, Zhou J X, Zhan X C. Modern instrumental analysis techniques for inorganic multi-element[J]. Acta Geologica Sinica, 2011, 85(11): 1878−1916. doi: 11-1951/P.20111025.0834.003
    [4]
    王晨希. XRF、ICP-OES及FAAS测定土壤样品中重金属元素对比研究[J]. 绿色科技, 2021, 23(6): 23−24. doi: 10.3969/j.issn.1674-9944.2021.06.007

    Wang C X. Comparative study on the determination of heavy metal elements in soil samples by XRF, ICP-OES and FAAS[J]. Green Science and Technology, 2021, 23(6): 23−24. doi: 10.3969/j.issn.1674-9944.2021.06.007
    [5]
    Brown G, Kanaris-Sotiriou R. The determination of sulphur in soils X-ray fluorescence analysis[J]. Annales Agronomiques, 1967, 18(6): 653. doi: 10.1039/an9699400782
    [6]
    Brumme M, Heckel J, Irmer K. Influence of polarization of exciting X-radiation on sensitivity of energy dispersive X-ray fluorescence trace analysis at rocks and soils[J]. Isotopenpraxis Isotopes in Environmental and Health Studies, 1990, 26(7): 341−342. doi: 10.1080/10256019008624324
    [7]
    Kubala-Kukuś A, Banaś D, Braziewicz J, et al. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 364: 85−92. doi: 10.1016/j.nimb.2015.07.136
    [8]
    Chuparina E V, Gunicheva T N. Nondestructive X-ray fluorescence determination of some elements in plant materials[J]. Journal of Analytical Chemistry, 2003, 58(9): 856−861. doi: 10.1023/A:1025689202055
    [9]
    吉昂. X射线荧光光谱三十年[J]. 岩矿测试, 2012, 31(3): 383−398. doi: 10.3969/j.issn.0254-5357.2012.03.002

    Ji A. Thirty years of X-ray fluorescence spectroscopy[J]. Rock and Mineral Analysis, 2012, 31(3): 383−398. doi: 10.3969/j.issn.0254-5357.2012.03.002
    [10]
    赖裕瑈. 基于SDD探测器X荧光仪的应用探讨[D]. 南昌: 东华理工大学, 2015.

    Lai Y R. Application of X-ray fluorescence instrument based on SDD detector[D]. Nanchang: East China University of Technology, 2015.
    [11]
    程大伟, 刘明博, 沈学静, 等. 双曲面弯晶X射线分析仪器及应用进展[J]. 冶金分析, 2022, 42(1): 10−17. doi: 10.13228/j.boyuan.issn1000-7571.011498

    Cheng D W, Liu M B, Shen X J. Hyperboloid bent crystal X-ray analysis instrument and application progress[J]. Metallurgical Analysis, 2022, 42(1): 10−17. doi: 10.13228/j.boyuan.issn1000-7571.011498
    [12]
    张勤, 樊守忠, 潘宴山, 等. X射线荧光光谱法测定化探样品中主、次和痕量组分[J]. 理化检验(化学分册), 2005, 41(8): 547−552. doi: 10.3321/j.issn:1001-4020.2005.08.003

    Zhang Q, Fan S Z, Pan Y S. Determination of primary, secondary and trace components in geochemical samples by X-ray fluorescence spectroscopy[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2005, 41(8): 547−552. doi: 10.3321/j.issn:1001-4020.2005.08.003
    [13]
    何姣姣, 江荣风, 王雁峰, 等. X射线荧光光谱法在测定土壤及植物、矿质养分方面的应用[J]. 中国土壤与肥料, 2020(1): 1−7. doi: 10.11838/sfsc.1673-6257.19047

    He J J, Jiang R F, Wang Y F. Application of X-ray fluorescence spectroscopy in the determination of mineral nutrients in soil and plants[J]. China Soil and Fertilizer, 2020(1): 1−7. doi: 10.11838/sfsc.1673-6257.19047
    [14]
    张杰. 土壤重金属XRF光谱重叠峰解析及含量反演模型研究[D]. 秦皇岛: 燕山大学, 2021.

    Zhang J. Study on analysis of overlapping peaks of soil heavy metal XRF spectra and content inversion model[D]. Qinhuangdao: Yanshan University, 2021.
    [15]
    林照彬. 便携式XRF土壤重金属分析仪快速检测与国标方法比对研究[J]. 皮革制作与环保科技, 2021, 2(10): 34−35, 37.

    Lin Z B. Comparison of portable XRF soil heavy metal analyzer with national standard method[J]. Leather Making and Environmental Technology, 2021, 2(10): 34−35, 37.
    [16]
    dos Anjos M, Lopes R, de Jesus E, et al. Quantitative analysis of metals in soil using X-ray fluorescence[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2000, 55(7): 1189−1194. doi: 10.1016/S0584-8547(0)00165-8
    [17]
    Jang M. Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites[J]. Environmental Geochemistry and Health, 2010, 32(3): 207−216. doi: 10.1007/s10653-009-9276-z
    [18]
    Wan M, Hu W, Qu M, et al. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils[J]. Ecological Indicators, 2019, 101: 583−594. doi: 10.1016/j.ecolind.2019.01.069
    [19]
    韩平, 王纪华, 陆安祥, 等. 便携式X射线荧光光谱分析仪测定土壤中重金属[J]. 光谱学与光谱分析, 2012, 32(3): 826−829. doi: 10.3964/j.issn.1000-0593(2012)03-0826-04

    Han P, Wang J H, Lu A X, et al. Determination of heavy metals in soil by portable X-ray fluorescence spectrometer[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 826−829. doi: 10.3964/j.issn.1000-0593(2012)03-0826-04
    [20]
    Radu T, Gallagher S, Byrne B, et al. Portable X-ray fluorescence as a rapid technique for surveying elemental distributions in soil[J]. Spectroscopy Letters, 2013, 46(7): 516−526. doi: 10.1080/00387010.2013.763829
    [21]
    Paulette L, Man T, Weindorf D C, et al. Rapid assessment of soil and contaminant variability via portable X-ray fluorescence spectroscopy: Copşa Mică, Romania[J]. Geoderma, 2015, 243–244: 130–140.
    [22]
    Peinado F M, Ruano S M, González M G B, et al. A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF)[J]. Geoderma, 2010, 159(1–2): 76−82. doi: 10.1016/j.geoderma.2010.06.019
    [23]
    焦思. 基于PXRF的土壤重金属污染空间异质性分析[D]. 南京: 南京林业大学, 2021.

    Jiao S. Spatial heterogeneity analysis of soil heavy metal pollution based on PXRF[D]. Nanjing: Nanjing Forestry University, 2021.
    [24]
    Qu M, Chen J, Huang B. Resampling with in situ field portable X-ray fluorescence spectrometry (FPXRF) to reduce the uncertainty in delineating the remediation area of soil heavy metals[J]. Environmental Pollution, 2021, 271: 116310. doi: 10.1016/j.envpol.2020.116310
    [25]
    彭洪柳. 粤北某铅锌冶炼厂周边农田镉铅污染风险与修复技术初探[D]. 芜湖: 安徽师范大学, 2019.

    Peng H L. A preliminary study on cadmium and lead pollution risk and remediation technology in farmland around a lead-zinc smelter in Northern Guangdong[D]. Wuhu: Anhui Normal University, 2019.
    [26]
    孟蕾, 韩平, 王世芳, 等. X射线荧光光谱在土壤重金属检测中的应用进展[J]. 食品与机械, 2017, 33(8): 210−213. doi: 10.13652/j.issn.1003-5788.2017.08.045

    Meng L, Han P, Wang S F, et al. Application progress of X-ray fluorescence spectroscopy in the detection of heavy metals in soil[J]. Food & Machinery, 2017, 33(8): 210−213. doi: 10.13652/j.issn.1003-5788.2017.08.045
    [27]
    武天云, Schoenau J J, 李凤民, 等. 土壤有机质概念和分组技术研究进展[J]. 应用生态学报, 2004, 15(4): 717−722. doi: 10.3321/j.issn:1001-9332.2004.04.036

    Wu T Y, Schoenau J J, Li F M, et al. Research progress on soil organic matter concept and grouping technology[J]. Chinese Journal of Applied Ecology, 2004, 15(4): 717−722. doi: 10.3321/j.issn:1001-9332.2004.04.036
    [28]
    Marguí E, Queralt I, Hidalgo M. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material[J]. TrAC Trends in Analytical Chemistry, 2009, 28(3): 362−372. doi: 10.1016/j.trac.2008.11.011
    [29]
    Shand C A, Wendler R. Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter[J]. Journal of Geochemical Exploration, 2014, 143: 31−42. doi: 10.1016/j.gexplo.2014.03.005
    [30]
    彭洪柳, 杨周生, 赵婕, 等. 高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究[J]. 农业环境科学学报, 2018, 37(7): 1386−1395. doi: 10.11654/jaes.2018-0568

    Peng H L, Yang Z S, Zhao J, et al. Application of high-precision portable X-ray fluorescence spectrometer in the rapid detection of heavy metals in polluted farmland soil[J]. Journal of Agro-Environment Science, 2018, 37(7): 1386−1395. doi: 10.11654/jaes.2018-0568
    [31]
    陈曾思澈, 徐亚, 雷国元, 等. PXRF土壤重金属检测的影响因素、模式与校正方法[J]. 中国环境科学, 2020, 40(2): 708−715. doi: 10.3969/j.issn.1000-6923.2020.02.030

    Chenzeng S C, Xu Y, Lei G Y, et al. Influencing factors, modes and correction methods for soil heavy metal detection by PXRF[J]. China Environmental Science, 2020, 40(2): 708−715. doi: 10.3969/j.issn.1000-6923.2020.02.030
    [32]
    Costa Y T, Ribeiro B T, Curi N, et al. Organic matter removal on oxide determination in Oxisols via portable X-ray fluorescence[J]. Communications in Soil Science and Plant Analysis, 2019, 50(6): 673−681. doi: 10.1080/00103624.2019.1589479
    [33]
    Ravansari R, Lemke L D. Portable X-ray fluorescence trace metal measurement in organic rich soils: pXRF response as a function of organic matter fraction[J]. Geoderma, 2018, 319: 175−184. doi: 10.1016/j.geoderma.2018.01.011
    [34]
    Sut‐Lohmann M, Ramezany S, Kästner F. Feasibility of pXRF to evaluate chosen heavy metals in soil highly influenced by municipal waste disposal—A monitoring study of a former sewage farm[J]. Land Degradation & Development, 2022, 33(3): 439−451. doi: 10.1002/ldr.4147
    [35]
    傅赵聪, 王翀, 吴春发, 等. HDXRF法农田土壤镉测定结果准确度评价与精准校正模型构建[J]. 土壤, 2023, 55(4): 829−837. doi: 10.13758/j.cnki.tr.2023.04.017

    Fu Z C, Wang C, Wu C F, et al. Accuracy evaluation and accurate correction model construction of cadmium determination results in farmland soil by HDXRF method[J]. Soils, 2023, 55(4): 829−837. doi: 10.13758/j.cnki.tr.2023.04.017
    [36]
    曹发明. XRF分析技术在土壤重金属检测中的应用研究[D]. 成都: 成都理工大学, 2014.

    Cao F M. Application of XRF analysis in soil heavy metal detection[D]. Chengdu: Chengdu University of Technology, 2014.
    [37]
    倪子月, 陈吉文, 刘明博, 等. 能量色散X射线荧光光谱法测定土壤中铬和锰的干扰校正[J]. 冶金分析, 2016, 36(10): 10−14. doi: 10.13228/j.boyuan.issn1000-7571.009844

    Ni Z Y, Chen J W, Liu M B, et al. Interference correction for determination of chromium and manganese in soil by energy dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(10): 10−14. doi: 10.13228/j.boyuan.issn1000-7571.009844
    [38]
    周云泷. X射线荧光法分析土壤中重金属含量[D]. 成都: 成都理工大学, 2015.

    Zhou Y L. Analysis of heavy metals in soil by X-ray fluorescence[D]. Chengdu: Chengdu University of Technology, 2015.
    [39]
    Ulmanu M, Anger I, Gamen E, et al. Rapid and low-cost determination of some heavy metals in soil using an X-ray fluorescence portable instrument[J]. Research Journal of Agricultural Science, 2011, 43(3): 235−241.
    [40]
    Lu J, Guo J, Wei Q, et al. A matrix effect correction method for portable X-ray fluorescence data[J]. Applied Sciences, 2022, 12(2): 568. doi: 10.3390/app12020568
    [41]
    章明奎. 亚热带山地垂直带土壤发生的讨论[J]. 中国农学通报, 2020, 36(23): 66−73.

    Zhang M K. Discussion on soil occurrence in the vertical zone of subtropical mountains[J]. Chinese Agricultural Science Bulletin, 2020, 36(23): 66−73.
    [42]
    唐晓勇, 倪晓芳, 商照聪, 等. 土壤中铁对砷的便携式X射线荧光光谱仪分析基体效应研究与校正[J]. 冶金分析, 2021, 41(1): 69−74. doi: 10.13228/j.boyuan.issn1000-7571.011109

    Tang X Y, Ni X F, Shang Z C, et al. Study and correction of matrix effect of iron on arsenic in soil by portable X-ray fluorescence spectrometer[J]. Metallurgical Analysis, 2021, 41(1): 69−74. doi: 10.13228/j.boyuan.issn1000-7571.011109
    [43]
    唐晓勇, 倪晓芳, 商照聪. 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正[J]. 岩矿测试, 2020, 39(3): 467−474. doi: 10.15898/j.cnki.11-2131/td.201911200161

    Tang X Y, Ni X F, Shang Z C. Effect and correction of iron in soil on the accuracy of p-XRF determination of chromium[J]. Rock and Mineral Analysis, 2020, 39(3): 467−474. doi: 10.15898/j.cnki.11-2131/td.201911200161
    [44]
    杨桂兰, 倪晓芳, 张长波. 基于便携式X射线荧光光谱法的土壤重金属快速检测[J]. 浙江农业学报, 2019, 31(11): 1903−1908. doi: 10.3969/j.issn.1004-1524.2019.21.17

    Yang G L, Ni X F, Zhang C B. Rapid detection of heavy metals in soil based on portable X-ray fluorescence spectrometry[J]. Journal of Zhejiang Agricultural Sciences, 2019, 31(11): 1903−1908. doi: 10.3969/j.issn.1004-1524.2019.21.17
    [45]
    陆安祥, 王纪华, 潘立刚, 等. 便携式X射线荧光光谱测定土壤中Cr, Cu, Zn, Pb和As的研究[J]. 光谱学与光谱分析, 2010, 30(10): 2848−2852. doi: 10.3964/j.issn.1000-0593(2010)10-2848-05

    Lu A X, Wang J H, Pan L G, et al. Determination of Cr, Cu, Zn, Pb and As in soil by portable X-ray fluorescence spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2848−2852. doi: 10.3964/j.issn.1000-0593(2010)10-2848-05
    [46]
    徐少强, 杨菲, 刘爽, 等. 便携式XRF对西南喀斯特地区碳酸盐岩风化壳土壤分析适用性评估[J]. 地球与环境, 2023, 31(2): 1−10. doi: 10.14050/j.cnki.1672-9250.2023.51.013

    Xu S Q, Yang F, Liu S, et al. Applicability of portable XRF for carbonate weathered crust soil analysis in southwest karst region[J]. Earth and Environment, 2023, 31(2): 1−10. doi: 10.14050/j.cnki.1672-9250.2023.51.013
    [47]
    唐嫚, 曾沛艺, 杨牧青, 等. X射线荧光光谱仪在茶园土壤总砷含量检测中的应用研究——以昌宁县为例[J]. 现代农业科技, 2022(20): 127−132, 144. doi: 10.3969/j.issn.1007-5739.2022.20.033

    Tang M, Zeng P Y, Yang M Q, et al. Application of X-ray fluorescence spectrometer in the detection of total arsenic content in tea plantation soil: A case study of Changning County[J]. Modern Agricultural Science and Technology, 2022(20): 127−132, 144. doi: 10.3969/j.issn.1007-5739.2022.20.033
    [48]
    李燕, 魏雨露, 夏龙飞. 便携式X荧光光谱仪在场地重金属污染调查中的应用研究[C]// 《环境工程》2019年全国学术年会论文集(下册). 北京: 《环境工程》编委会, 2019: 6.

    Li Y, Wei Y L, Xia L F. Application of portable X-ray fluorescence spectrometer in the investigation of heavy metal pollution in the site[C]//Proceedings of the 2019 National Academic Annual Conference of Environmental Engineering (Volume Ⅱ). Beijing: Editorial Board of 《Environmental Engineering》, 2019: 6.
    [49]
    刘尚华, 陶光仪, 吉昂. X射线荧光光谱分析中的粉末压片制样法[J]. 光谱实验室, 1998, 15(6): 10−16. doi: 10.3969/j.issn.1004-8138.1998.06.003

    Liu S H, Tao G Y, Ji A. Powder tablet preparation method in X-ray fluorescence spectroscopy[J]. Spectroscopy Laboratory, 1998, 15(6): 10−16. doi: 10.3969/j.issn.1004-8138.1998.06.003
    [50]
    金楚湄, 闫颖, 袁昕玥, 等. 影响XRF法测定土壤重金属Pb、Cd含量准确性的因素优化[J]. 山东化工, 2023, 52(19): 134−138, 142. doi: 10.3969/j.issn.1008-021X.2023.19.036

    Jin C M, Yan Y, Yuan X Y, et al. Optimization of factors affecting the accuracy of XRF determination of soil heavy metal Pb and Cd content[J]. Shandong Chemical Industry, 2023, 52(19): 134−138, 142. doi: 10.3969/j.issn.1008-021X.2023.19.036
    [51]
    Peralta E, Pérez G, Ojeda G, et al. Heavy metal availability assessment using portable X-ray fluorescence and single extraction procedures on former vineyard polluted soils[J]. Science of the Total Environment, 2020, 726: 138670. doi: 10.1016/j.scitotenv.2020.138670
    [52]
    钱原铬. X射线荧光光谱定量分析土壤中重金属方法研究[D]. 长春: 吉林大学, 2012.

    Qian Y G. Quantitative analysis of heavy metals in soil by X-ray fluorescence spectroscopy[D]. Changchun: Jilin University, 2012.
    [53]
    de Freitas M G, dos Santos F R, Parreira P S, et al. Influence of soil sample grain size on energy dispersive X-ray fluorescence analysis: A comparative study case with three spectrometers[J]. Spectroscopy Letters, 2021, 54(7): 560−570. doi: 10.1080/00387010.2021.1957941
    [54]
    Ge L, Lai W, Lin Y. Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis[J]. X-Ray Spectrometry, 2005, 34(1): 28−34. doi: 10.1002/xrs.782
    [55]
    朱梦杰. 便携式XRF测定仪在土壤检测中的应用及其影响因素[J]. 中国环境监测, 2019, 35(6): 129−137. doi: 10.19316/j.issn.1002-6002.2019.06.18

    Zhu M J. Application of portable XRF analyzer in soil detection and its influencing factors[J]. China Environmental Monitoring, 2019, 35(6): 129−137. doi: 10.19316/j.issn.1002-6002.2019.06.18
    [56]
    冉景, 王德建, 王灿, 等. 便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J]. 光谱学与光谱分析, 2014, 34(11): 3113−3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06

    Ran J, Wang D J, Wang C. Comparative study on the determination of heavy metals in soil by portable X-ray fluorescence spectrometry and atomic absorption/atomic fluorescence method[J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 3113−3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06
    [57]
    王清亚. 基于XRF的土壤重金属定量分析方法研究及应用[D]. 南昌: 东华理工大学, 2021.

    Wang Q Y. Research and application of quantitative analysis method of soil heavy metals based on XRF[D]. Nanchang: East China University of Technology, 2021.
    [58]
    Weindorf D C, Bakr N, Zhu Y, et al. Influence of ice on soil elemental characterization via portable X-ray fluorescence spectrometry[J]. Pedosphere, 2014, 24(1): 1−12. doi: 10.1016/S1002-0160(13)60076-4
    [59]
    赵合琴, 郑先君, 魏丽芳, 等. X射线荧光光谱分析中样品制备方法评述[J]. 河南化工, 2006(10): 8−11. doi: 10.3969/j.issn.1003-3467.2006.10.003

    Zhao H Q, Zheng X J, Wei L F, et al. Review of sample preparation methods in X-ray fluorescence spectroscopy[J]. Henan Chemical Industry, 2006(10): 8−11. doi: 10.3969/j.issn.1003-3467.2006.10.003
    [60]
    李亚, 王英凯, 张旭, 等. X射线荧光光谱法测定高含量有机碳样品中的钾、钠、钙、镁、硅、铝、铁、钛、锰、磷[J]. 中国无机分析化学, 2021, 11(2): 57−61. doi: 10.3969/j.issn.2095-1035.2021.02.012

    Li Y, Wang Y K, Zhang X, et al. Determination of potassium, sodium, calcium, magnesium, silicon, aluminum, iron, titanium, manganese and phosphorus in high organic carbon samples by X-ray fluorescence spectroscopy[J]. China Journal of Inorganic Analytical Chemistry, 2021, 11(2): 57−61. doi: 10.3969/j.issn.2095-1035.2021.02.012
    [61]
    胡明情. XRF法检测土壤重金属的影响因素[J]. 环境监控与预警, 2016, 8(2): 23−24, 27. doi: 10.3969/j.issn.1674-6732.2016.02.006

    Hu M Q. Influencing factors of XRF detection of heavy metals in soil[J]. Environmental Monitoring and Early Warning, 2016, 8(2): 23−24, 27. doi: 10.3969/j.issn.1674-6732.2016.02.006
    [62]
    Hu W, Huang B, Weindorf D C, et al. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(4): 420−426. doi: 10.1007/s00128-014-1236-3
    [63]
    Angeles-Chavez C, Antonio J, Antonia M. Chemical quantification of Mo-S, W-Si and Ti-V by energy dispersive X-ray spectroscopy[M]//Sharma S K. X-Ray Spectroscopy, 2012.
    [64]
    Newlander K, Goodale N, Jones G T, et al. Empirical study of the effect of count time on the precision and accuracy of pXRF data[J]. Journal of Archaeological Science, 2015, 3: 534−548. doi: 10.1016/j.jasrep.2015.07.007
    [65]
    王晔, 冷传旭, 潘增志, 等. 提高便携式XRF测定仪在土壤污染调查中使用效果的措施[J]. 化工管理, 2022(34): 71−73. doi: 10.19900/j.cnki.ISSN1008-4800.2022.34.022

    Wang Y, Leng C X, Pan Z Z, et al. Measures to improve the use of portable XRF analyzers in soil pollution investigation[J]. Chemical Industry Management, 2022(34): 71−73. doi: 10.19900/j.cnki.ISSN1008-4800.2022.34.022
    [66]
    吴晓玲. XRF分析土壤重金属元素含量的方法研究[D]. 成都: 成都理工大学, 2016.

    Wu X L. XRF method for analysis of heavy metal content in soil[D]. Chengdu: Chengdu University of Technology, 2016.
    [67]
    黄秋鑫, 孙秀敏. 粉末标准曲线XRF法检测土壤中的重/类金属[J]. 环境科学与技术, 2014, 37(9): 92−98. doi: 10.3969/j.issn.1003-6504.2014.09.018

    Huang Q X, Sun X M. Detection of heavy/metalloids in soil by standard curve XRF of powder[J]. Environmental Science and Technology, 2014, 37(9): 92−98. doi: 10.3969/j.issn.1003-6504.2014.09.018
    [68]
    王世芳, 韩平, 王纪华, 等. X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J]. 食品安全质量检测学报, 2016, 7(11): 4394−4400. doi: 10.19812/j.cnki.jfsq11-5956/ts.2016.11.028

    Wang S F, Han P, Wang J H, et al. Research progress on the application of X-ray fluorescence spectroscopy in the detection of heavy metals in soil[J]. Journal of Food Safety and Quality, 2016, 7(11): 4394−4400. doi: 10.19812/j.cnki.jfsq11-5956/ts.2016.11.028
    [69]
    章炜, 张玉钧, 陈东. 土壤重金属镍元素的X射线荧光定量分析[J]. 激光与光电子学进展, 2012, 49(1): 137−140. doi: 10.3788/LOP49.013002

    Zhang Y, Zhang Y J, Chen D. X-ray fluorescence quantitative analysis of heavy metal nickel in soil[J]. Advances in Laser and Optoelectronics, 2012, 49(1): 137−140. doi: 10.3788/LOP49.013002
    [70]
    Li F, Ge L, Tang Z, et al. Recent developments on XRF spectra evaluation[J]. Applied Spectroscopy Reviews, 2020, 55(4): 263−287. doi: 10.1080/05704928.2019.1580715
    [71]
    López-Camacho E, García-Cortés A, Palacio C. A family of smoothing algorithms for electron and other spectroscopies based on the Chebyshev filter[J]. Thin Solid Films, 2006, 513(1−2): 72−77. doi: 10.1016/j.tsf.2006.01.024
    [72]
    Wu X, Liu Z. A smoothing method for X-ray spectrum based on best beamforming[J]. Radiation Physics and Chemistry, 2012, 81(3): 248−252. doi: 10.1016/j.radphyschem.2011.11.048
    [73]
    杨帆, 王鹏, 张宁超, 等. 一种基于小波变换的改进滤波算法及其在光谱去噪方面的应用[J]. 国外电子测量技术, 2020, 39(8): 98−104. doi: 10.19652/j.cnki.femt.2002126

    Yang F, Wang P, Zhang N C, et al. An improved filtering algorithm based on wavelet transform and its application in spectral denoising[J]. Foreign Electronic Measurement Technology, 2020, 39(8): 98−104. doi: 10.19652/j.cnki.femt.2002126
    [74]
    李芳. 基于小波变换的能量色散X射线荧光光谱建模方法研究[D]. 长春: 吉林大学, 2015.

    Li F. Research on modeling method of energy-dispersive X-ray fluorescence spectroscopy based on wavelet transform[D]. Changchun: Jilin University, 2015.
    [75]
    黄素真, 宋晓梅, 任正伟. 基于双树复小波变换信号去噪算法研究[J]. 国外电子测量技术, 2017, 36(10): 19−22. doi: 10.3969/j.issn.1002-8978.2017.10.006

    Huang S Z, Song X M, Ren Z W. Research on denoising algorithm for signal based on double-tree complex wavelet transform[J]. Foreign Electronic Measurement Technology, 2017, 36(10): 19−22. doi: 10.3969/j.issn.1002-8978.2017.10.006
    [76]
    Lu B, Chen Y, Zhu Y, et al. An energy spectrum smoothing algorithm based on TCC-DEE[J]. Nuclear Science and Techniques, 2017, 28(10): 140. doi: 10.1007/s41365-017-0290-z
    [77]
    王卓, 葛良全, 张庆贤, 等. 基于傅里叶变换的本底扣除法在X荧光分析中的应用[J]. 核技术, 2012, 35(7): 549−551.

    Wang Z, Ge L Q, Zhang Q X, et al. Application of background subtraction method based on Fourier transform in X-ray fluorescence analysis[J]. Nuclear Techniques, 2012, 35(7): 549−551.
    [78]
    Hu Y, Zhou J, Tang J, et al. The application of complex wavelet transform to spectral signals background deduction[J]. Chromatographia, 2013, 76(11−12): 687−696. doi: 10.1007/s10337-013-2456-0
    [79]
    Zhao F, Wang A. A background subtraction approach based on complex wavelet transforms in EDXRF: Background subtraction approach based on complex wavelet[J]. X-Ray Spectrometry, 2015, 44(2): 41−47. doi: 10.1002/xrs.2576
    [80]
    Morháč M. An algorithm for determination of peak regions and baseline elimination in spectroscopic data[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600(2): 478−487. doi: 10.1016/j.nima.2008.11.132
    [81]
    Jia L, Gu Y, Zhang Q, et al. The accuracy evaluation method of baseline estimation algorithms in energy dispersive X-ray fluorescence spectrum analysis[J]. X-Ray Spectrometry, 2023, 52(1): 22−27. doi: 10.1002/xrs.3180
    [82]
    王欣然. 基于XRF的土壤重金属元素检测分析方法研究[D]. 成都: 电子科技大学, 2023.

    Wang X R. Research on XRF-based analysis method for the detection of heavy metal elements in soil[D]. Chengdu: University of Electronic Science and Technology of China, 2023.
    [83]
    刘峥莹. 土壤重金属XRF光谱重叠峰解析及含量预测模型研究[D]. 秦皇岛: 燕山大学, 2022.

    Liu Z Y. Analysis of overlapping peaks of soil heavy metal XRF spectra and content prediction model[D]. Qinhuangdao: Yanshan University, 2022.
    [84]
    江晓宇, 李福生, 王清亚, 等. 便携式XRF分析仪检测土壤重金属应用研究[J]. 核电子学与探测技术, 2021, 41(6): 1005−1012. doi: 10.3969/j.issn.0258-0934.2021.06.015

    Jiang X Y, Li F S, Wang Q Y, et al. Research on the application of portable XRF analyzer for the detection of heavy metals in soil[J]. Nuclear Electronics and Detection Technology, 2021, 41(6): 1005−1012. doi: 10.3969/j.issn.0258-0934.2021.06.015
    [85]
    程惠珠, 杨婉琪, 李福生, 等. 面向XRF的竞争性自适应重加权算法和粒子群优化的支持向量机定量分析研究[J]. 光谱学与光谱分析, 2023, 43(12): 3742−3746. doi: 10.3964/j.issn.1000-0593(2023)12-3742-05

    Cheng H Z, Yang W Q, Li F S. Quantitative analysis of competitive adaptive reweighting algorithm and support vector machine for particle swarm optimization for XRF[J]. Spectroscopy and Spectral Analysis, 2023, 43(12): 3742−3746. doi: 10.3964/j.issn.1000-0593(2023)12-3742-05
    [86]
    黄启厅, 周炼清, 史舟, 等. FPXRF——偏最小二乘法定量分析土壤中的铅含量[J]. 光谱学与光谱分析, 2009, 29(5): 1434−1438. doi: 10.3964/j.issn.1000-0593(2009)05-1434-05

    Huang Q T, Zhou L Q, Shi Z, et al. FPXRF: Partial least squares method for quantitative analysis of lead content in soil[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1434−1438. doi: 10.3964/j.issn.1000-0593(2009)05-1434-05
    [87]
    杨惠. 基于XRF的土壤重金属CNN-ELM混合预测模型研究[D]. 秦皇岛: 燕山大学, 2021.

    Yang H. Research on CNN-ELM hybrid prediction model of soil heavy metals based on XRF[D]. Qinhuangdao: Yanshan University, 2021.
    [88]
    Kirsanov D, Panchuk V, Goydenko A, et al. Improving precision of X-ray fluorescence analysis of lanthanide mixtures using partial least squares regression[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 113: 126−131. doi: 10.1016/j.sab.2015.09.013
    [89]
    Cheng S. Heavy metal pollution in China: Origin, pattern and control[J]. Environmental Science and Pollution Research, 2003, 10(3): 192−198. doi: 10.1065/espr2002.11.141.1
    [90]
    Melquiades F L, dos Santos F R. Preliminary Results: Energy dispersive X-ray fluorescence and partial least squares regression for organic matter determination in soil[J]. Spectroscopy Letters, 2015, 48(4): 286−289. doi: 10.1080/00387010.2013.874532
    [91]
    Morona F, dos Santos F R, Brinatti A M, et al. Quick analysis of organic matter in soil by energy-dispersive X-ray fluorescence and multivariate analysis[J]. Applied Radiation and Isotopes, 2017, 130: 13−20. doi: 10.1016/j.apradiso.2017.09.008
    [92]
    John K, Kebonye N M, Agyeman P C, et al. Comparison of cubist models for soil organic carbon prediction via portable XRF measured data[J]. Environmental Monitoring and Assessment, 2021, 193(4): 1−15. doi: 10.1007/s10661-021-08946-x
    [93]
    Zhu Y, Weindorf D C, Zhang W. Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture[J]. Geoderma, 2011.
    [94]
    Silva S H G, Weindorf D C, Pinto L C, et al. Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach[J]. Geoderma, 2020, 362: 114136. doi: 10.1016/j.geoderma.2019.114136
    [95]
    Weindorf S. Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH)[J]. Geoderma, 2014, 232-234: 141−147. doi: 10.1016/j.geoderma.2014.05.005
    [96]
    Teixeira A F D S, Pelegrino M H P, Faria W M. Tropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometry[J]. Geoderma, 2020, 361: 114132. doi: 10.1016/j.geoderma.2019.114132
    [97]
    Pelegrino M H P, Silva S H G, de Faria Á J G, et al. Prediction of soil nutrient content via pXRF spectrometry and its spatial variation in a highly variable tropical area[J]. Precision Agriculture, 2022, 23(1): 18−34. doi: 10.1007/s11119-021-09825-8
    [98]
    Andrade R, Silva S H G, Weindorf D C, et al. Micronutrients prediction via pXRF spectrometry in Brazil: Influence of weathering degree[J]. Geoderma Regional, 2021, 27: e00431. doi: 10.1016/j.geodrs.2021.e00431

Catalog

    Article views (155) PDF downloads (96) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return