Citation: | TANG Qingyu,CHEN Lu,TIAN Shihong,et al. A Study on Memory Effects in Lithium and Boron Isotope Analysis Using MC-ICP-MS[J]. Rock and Mineral Analysis,2024,43(2):201−212. DOI: 10.15898/j.ykcs.202310260167 |
Lithium (Li) and boron (B) isotopes are excellent tracers in geological processes. In order to study and eliminate the memory effects of lithium and boron element in isotopic measurements using MC-ICP-MS, different background rinsing protocols were designed with reference to previous research. The
[1] |
万红琼, 孙贺, 刘海洋, 等. 俯冲带锂同位素地球化学: 回顾与展望[J]. 地学前缘, 2015, 22(5): 29−43. doi: 10.13745/j.esf.2015.05.002
Wan H Q, Sun H, Liu H Y, et al. Li isotope geochemistry in subduction zones: Review and prospect[J]. Earth Science Frontiers, 2015, 22(5): 29−43. doi: 10.13745/j.esf.2015.05.002
|
[2] |
陆一敢, 肖益林, 王洋洋, 等. 锂同位素在矿床学中的应用: 现状与展望[J]. 地球科学, 2021, 46(12): 4346−4365. doi: 10.3799/dqkx.2020.390
Lu Y G, Xiao Y L, Wang Y Y, et al. Exploration of Li isotope in application of ore deposits[J]. Earth Science, 2021, 46(12): 4346−4365. doi: 10.3799/dqkx.2020.390
|
[3] |
Penniston-Dorland S, Liu X M, Rudnick R L. Lithium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 165−217. doi: 10.2138/rmg.2017.82.6
|
[4] |
郭顺. 俯冲-碰撞带硼循环[J]. 矿物岩石地球化学通报, 2021, 40(5): 1049−1060, 997. doi: 10.19658/j.issn.1007-2802.2021.40.063
Guo S. Boron cycling in subduction-collision zones[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(5): 1049−1060, 997. doi: 10.19658/j.issn.1007-2802.2021.40.063
|
[5] |
李银川, 董戈, 雷昉, 等. 硼同位素分馏的实验理论认识和矿床地球化学研究进展[J]. 地学前缘, 2020, 27(3): 14−28. doi: 10.13745/j.esf.sf.2020.4.43
Li Y C, Dong G, Lei F, et al. Experimental and theoretical understanding of boron isotope fractionation and advances in ore deposit geochemistry study[J]. Earth Science Frontiers, 2020, 27(3): 14−28. doi: 10.13745/j.esf.sf.2020.4.43
|
[6] |
张艳灵, 肖应凯, 马云麒, 等. 鹿角珊瑚硼同位素组成与海水表面pH值的相关性研究[J]. 分析化学, 2019, 47(1): 138−146. doi: 10.19756/j.issn.0253-3820.181516
Zang Y L, Xiao Y K, Ma Y Q, et al. Study on the correlation between boron isotope composition of Acropora staghorn and water surface pH value[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 138−146. doi: 10.19756/j.issn.0253-3820.181516
|
[7] |
刘明亮, 正安婷, 尚建波, 等. 高温地热流体中硼的地球化学研究进展[J]. 地球科学, 2023, 48(3): 878−893. doi: 10.3799/dqkx.2022.235
Liu M L, Zheng A T, Shang J B, et al. Research progress of boron geochemistry in high-temperature geothermal fluids[J]. Earth Science, 2023, 48(3): 878−893. doi: 10.3799/dqkx.2022.235
|
[8] |
李慧芳, 马云麒, 李丽娟, 等. 热电离质谱法测定锂同位素的研究进展[J]. 盐湖研究, 2014, 22(4): 50−56.
Li H F, Ma Y Q, Li L J, et al. Research progress of lithium isotope determination by thermoelectric ionization mass spectrometry[J]. Journal of Salt Lake Research, 2014, 22(4): 50−56.
|
[9] |
韦刚健, Graham Mortimer, Malcolm McCulloch. 珊瑚高精度硼同位素组成分析: PTIMS与NTIMS方法的对比研究[J]. 地球化学, 2009, 38(2): 114−122. doi: 10.19700/j.0379-1726.2009.02.002
Wei G J, Mortimer G, McCulloch M. Measurement of high-precision boron isotopic compositions in coral samples: Comparison between PTlMS and NTIMS methods[J]. Geochimica, 2009, 38(2): 114−122. doi: 10.19700/j.0379-1726.2009.02.002
|
[10] |
赵悦, 侯可军, 田世洪, 等. 常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究[J]. 岩矿测试, 2015, 34(1): 28−39. doi: 10.15898/j.cnki.11-2131/td.2015.01.006
Zhao Y, Hou K J, Tian S H, et al. Study on measurements of lithium isotopic compositions for common standard reference materials using multi-collector inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 28−39. doi: 10.15898/j.cnki.11-2131/td.2015.01.006
|
[11] |
张俊文, 孟俊伦, 赵志琦, 等. 多接收电感耦合等离子质谱法准确测定天然地质样品中的锂同位素组成[J]. 分析化学, 2019, 47(3): 415−422. doi: 10.19756/j.issn.0253-3820.181444
Zhang J W, Meng J L, Zhao Z Q, et al. Multireceiver inductively coupled plasma mass spectrometry for accurate determination of lithium isotope composition in natural geological samples[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 415−422. doi: 10.19756/j.issn.0253-3820.181444
|
[12] |
蔺洁, 刘勇胜, 胡兆初, 等. MC-ICP-MS准确测定地质样品中锂同位素组成[J]. 矿物岩石地球化学通报, 2016, 35(3): 458−464. doi: 10.3969/j.issn.1007-2802.2016.03.008
Lin J, Liu Y S, Hu Z C, et al. Accurate analysis of lithium isotopic composition of geological samples by MC-ICP-MS[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 458−464. doi: 10.3969/j.issn.1007-2802.2016.03.008
|
[13] |
李子夏, 逯海. 一步离子交换-多接收电感耦合等离子体质谱法测定高钙生物样品的硼同位素组成[J]. 岩矿测试, 2020, 39(3): 417−424. doi: 10.15898/j.cnki.11-2131/td.201909290141
Li Z X, Lu H. Determination of boron isotope composition in high calcium biological samples by one-step ion exchange and multiple reception inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(3): 417−424. doi: 10.15898/j.cnki.11-2131/td.201909290141
|
[14] |
Cai Y, Rasbury E T, Wooton K M, et al. Rapid boron isotope and concentration measurements of silicate geological reference materials dissolved through sodium peroxide sintering[J]. Journal of Analytical Atomic Spectrometry, 2021, 36: 2153−2163. doi: 10.1039/D1JA00195G
|
[15] |
Jeffcoate A B, Elliott T, Thomas A, et al. Precise/small sample size determinations of lithium isotopic compositions of geological reference materials and modern seawater by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2004, 28: 161−172. doi: 10.1111/j.1751-908X.2004.tb01053.x
|
[16] |
He M Y, Deng L, Lu H, et al. Elimination of the boron memory effect for rapid and accurate boron isotope analysis by MC-ICP-MS using NaF[J]. Journal of Analytical Atomic Spectrometry, 2019, 34: 1026−1032. doi: 10.1039/C9JA00007K
|
[17] |
冯林秀, 李正辉, 曹秋香, 等. 硼同位素分析测试技术研究进展[J]. 岩矿测试, 2023, 42(1): 16−38. doi: 10.15898/j.cnki.11-2131/td.202209140170
Feng L X, Li Z H, Chao Q X, et al. A review on the development of boron isotope analytical techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 16−38. doi: 10.15898/j.cnki.11-2131/td.202209140170
|
[18] |
李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669. doi: 10.15898/j.cnki.11-2131/td.201907310115
Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669. doi: 10.15898/j.cnki.11-2131/td.201907310115
|
[19] |
Foster G L, Marschall H R, Palmer M R. Boron isotopes: The fifth element[M]. Switzerland: Springer Cham, 2018: 13-31.
|
[20] |
徐洁, 张贵宾, 李楠, 等. LA-MC-ICPMS电气石及白云母原位硼同位素测试方法及应用[J]. 岩石矿物学杂志, 2020, 39(3): 323−334. doi: 10.3969/j.issn.1000-6524.2020.03.008
Xu J, Zhang G B, Li N, et al. In situ boron isotope analysis method for tourmaline and muscovite by LA-MC-ICPMS and its applications[J]. Acta Petrologica et Mineralogica, 2020, 39(3): 323−334. doi: 10.3969/j.issn.1000-6524.2020.03.008
|
[21] |
蒋少涌, 陈唯, 赵葵东, 等. 基于LA-(MC)-ICP-MS的矿物原位微区同位素分析技术及其应用[J]. 质谱学报, 2021, 42(5): 623−640. doi: 10.7538/zpxb.2021.0135
Jiang S Y, Chen W, Zhao K D, et al. In situ micro-analysis of isotopic compositions of solid minerals using LA-(MC)-ICP-MS methods and their applications[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 623−640. doi: 10.7538/zpxb.2021.0135
|
[22] |
Steinmann L K, Oeser M, Horn I, et al. In situ high-precision lithium isotope analyses at low concentration levels with femtosecond-LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(7): 1447−1458. doi: 10.1039/c9ja00088g
|
[23] |
Evans D, Gerdes A, Coenen D, et al. Accurate correction for the matrix interference on laser ablation MC-ICPMS boron isotope measurements in CaCO3 and silicate matrices[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(8): 1607−1617. doi: 10.1039/d1ja00073j
|
[24] |
刘纯瑶, 苟龙飞, 邓丽, 等. 离子交换过程中锂同位素分馏对锂同位素测试准确度的影响[J]. 岩矿测试, 2019, 38(1): 35−44. doi: 10.15898/j.cnki.11-2131/td.201806060070
Liu C Y, Gou L F, Deng L, et al. Effects of Li isotopic fractionation during ion exchange on the measurement accuracy of Li isotopes[J]. Rock and Mineral Analysis, 2019, 38(1): 35−44. doi: 10.15898/j.cnki.11-2131/td.201806060070
|
[25] |
苏嫒娜, 田世洪, 李真真, 等. MC-ICP-MS高精度测定锂同位素分析方法[J]. 地学前缘, 2011, 18(2): 304−314.
Su A N, Tian S H, Li Z Z, et al. High-precision measurement of lithium isotopes using MC-ICP-MS[J]. Earth Science Frontiers, 2011, 18(2): 304−314.
|
[26] |
Paul A N, Stewart J A, Agostini S, et al. Refining boron isotopic measurements of silicate samples by multi-collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS)[J]. Geostandards and Geoanalytical Research, 2024, 48(1): 91−108. doi: 10.1111/ggr.12527
|
[27] |
Chen X Y, Teng F Z, Catling D C. Fast and precise boron isotopic analysis of carbonates and seawater using Nu Plasma Ⅱ multi-collector inductively coupled plasma mass spectrometry and a simple sample introduction system[J]. Rapid Communications in Mass Spectrometry, 2019, 33: 1169−1178. doi: 10.1002/rcm.8456
|
[28] |
Buisson M, Louvat P, Thaler C, et al. High precision MC-ICP-MS measurements of 11B/10B ratios from ng amounts of boron in carbonate samples using microsublimation and direct injection (μ-dDIHEN)[J]. Journal of Analytical Atomic Spectrometry, 2021, 36: 2116−2131. doi: 10.1039/d1ja00109d
|
[29] |
Flesch G D, Anderson Jr, A R, et al. A secondary isotopic standard for 6Li/7Li determinations[J]. International Journal of Mass Spectrometry and Ion Physics, 1973, 12(3): 265−272. doi: 10.1016/0020-7381(73)80043-9
|
[30] |
Bouman C, Elliott T, Vroon P Z. Lithium inputs to subduction zones[J]. Chemical Geology, 2004, 212: 59−79. doi: 10.1016/j.chemgeo.2004.08.004
|
[31] |
Li W, Liu X M, Godfrey L V. Optimisation of lithium chromatography for isotopic analysis in geological reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2019, 43: 261−276. doi: 10.1111/ggr.12254
|
[32] |
Lin J, Liu Y, Hu Z, et al. Accurate determination of lithium isotope ratios by MC-ICP-MS without strict matrix-matching by using a novel washing method[J]. Journal of Analytical Atomic Spectrometry, 2016, 31: 390−397. doi: 10.1039/c5ja00231a
|
[33] |
Zhu G, Ma J, Wei G, et al. A rapid and simple method for lithium purification and isotopic analysis of geological reference materials by MC-ICP-MS[J]. Frontiers in Chemistry, 2020, 8: 557489. doi: 10.3389/fchem.2020.557489
|
[34] |
Bao Z, Huang K, Huang T, et al. Precise magnesium isotope analyses of high-K and low-Mg rocks by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34: 940−953. doi: 10.1039/C9JA00002J
|
[35] |
Druce M, Stirling C H, Rolison J M. High-precision zinc isotopic measurement of certified reference materials relevant to the environmental, Earth, planetary and biomedical sciences[J]. Geostandards and Geoanalytical Research, 2020, 44: 711−732. doi: 10.1111/GGR.12341
|
1. |
牛爱钰,李欣,刘菲,杨珊珊. 溶解性二价铁-铁氧化物非均相体系氧化还原电位的电化学测定方法探究. 岩矿测试. 2024(03): 407-416 .
![]() |