• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
YU Tingting,WANG Lei,GUO Lin,et al. Determination of 9 Major and Minor Elements in Beryllium Ore by ICP-OES with Acid Dissolution[J]. Rock and Mineral Analysis,2023,42(5):923−933. DOI: 10.15898/j.ykcs.202308060123
Citation: YU Tingting,WANG Lei,GUO Lin,et al. Determination of 9 Major and Minor Elements in Beryllium Ore by ICP-OES with Acid Dissolution[J]. Rock and Mineral Analysis,2023,42(5):923−933. DOI: 10.15898/j.ykcs.202308060123

Determination of 9 Major and Minor Elements in Beryllium Ore by ICP-OES with Acid Dissolution

More Information
  • Received Date: August 05, 2023
  • Revised Date: August 27, 2023
  • Accepted Date: September 07, 2023
  • Available Online: November 07, 2023
  • BACKGROUND

    Beryllium ore is one of the scarce metal minerals in China. Beryllium ore is widely used mineral resources, but it has complex components, and is always concomitant with other metallic minerals. Accurate determination of primary and secondary elements in beryllium ore is significant for its comprehensive utilization. Inductively coupled plasma-optical emission spectrometry (ICP-OES) has been used in elemental analysis of beryllium ore. However, there are some disadvantages: It is considered that beryllium concentrate is difficult to completely decompose by acid dissolution; determination of beryllium concentrate by alkali fusion has serious matrix interference; the existing research focuses on analysis of a single type of beryllium ore.

    OBJECTIVES

    To establish a multi-element simultaneous determination method, which is suitable for various types of beryllium ore samples and has little interference with the matrix of instrumental analysis solution.

    METHODS

    Beryl, hsianghualite and helvite samples were selected in the experiment. Digestion effect on beryllium ore under eight different acid digestion conditions were compared, such as digestion on electric heating board, high pressure sealing, microwave digestion, different kinds of acid digestion and extraction acid. The weight of the sample, the volume of the acid, the digestion time and instrument measurement were optimized. At the same time, according to beryllium ore’s mode of occurrence of elements, the best spectrum lines of each element were determined.

    RESULTS

    (1) The results show that the best mixed digested acid on electric heating board is nitric acid-hydrochloric acid-hydrofluoric acid-perchloric acid. The best extracted acid is hydrochloric acid, which is better than nitric acid or aqua regia. The high-pressure sealing method cannot completely dissolve Al, Ca and Mg elements of beryl, and the microwave method has poor effect on the digestion of Mg elements of beryl.  (2) The digestion conditions are determined. Weigh the sample of 0.1000g into polytetrafluoroethylene crucible, moisten the sample with a small amount of deionized water, and add 2mL nitric acid-3mL hydrochloric acid-5mL hydrofluoric acid-1mL perchloric acid; cover and place the crucible on electric heating plate; decomposing at 120℃ for 2h, then 150℃ for a further 2h; remove the lid and boil away perchloric acid at 190℃; extract with 4mL 50% hydrochloric acid and add deionized water to 25mL. The solution is determined by ICP-OES. The detection limit of Be is 0.0001%, which is lower than the boundary grade of beryllium ore. The detection limit of other elements is better than the existing standard method, and the precision RSD of each major element is <5%. By verification of standard materials, the accuracy of the method meets the needs of beryllium ore determination. The analysis accuracy and precision of three real beryllium ore samples from fields is satisfying.  (3) By optimizing the conditions of mixed acid digestion and instrument determination of the existing method, the established method can also accurately determine concentrate sample, and the matrix of the solution is simple to be determined by the instrument.

    CONCLUSIONS

    In this study, a mixed acid decomposition ICP-OES method for simultaneous determination of 9elements including Al, Be, Ca, Fe, K, Na, Mg, Li and Mn in beryllium ore has been established, which can be applied to different types and contents of beryllium ore. The established method provides necessary technical support for the research and exploration of beryllium ore.

  • [1]
    林博磊, 尹丽文, 崔荣国, 等. 全球铍资源分布及供需格局[J]. 国土资源情报, 2018(1): 13−17.

    Lin B L, Yin L W, Cui R G, et al. Global beryllium resources distribution and supply and demand pattern[J]. Land and Resources Information, 2018(1): 13−17.
    [2]
    Ashley K. Measurement of ultra-trace beryllium in occupational hygiene samples by extraction and fluorescence detection[J]. Journal of Chemical Health & Safety, 2011, 18(5): 26−33.
    [3]
    Agrawal A, Cronin J P, Agrawal A, et al. Extraction and optical fluorescence method for the measurement of trace beryllium in soils[J]. Environmental Science & Technology, 2008, 42(6): 2066−2071.
    [4]
    郑莉芳, 刘新宇, 鲍帅平, 等. 稀有金属铍的性能研究进展[J]. 稀有金属, 2023, 47(2): 292−302. doi: 10.13373/j.cnki.cjrm.XY21110037

    Zheng L F, Liu X Y, Bao S P, et al. Research progress on properties of rare metal beryllium[J]. Chinese Journal of Rare Metals, 2023, 47(2): 292−302. doi: 10.13373/j.cnki.cjrm.XY21110037
    [5]
    梁飞, 赵汀, 王登红, 等. 中国铍资源供需预测与发展战略[J]. 中国矿业, 2018, 27(11): 6−10. doi: 10.12075/j.issn.1004-4051.2018.11.011

    Liang F, Zhao T, Wang D H, et al. Supply and demand forecast and development strategy of beryllium resources in China[J]. China Mining Magazine, 2018, 27(11): 6−10. doi: 10.12075/j.issn.1004-4051.2018.11.011
    [6]
    毛素荣, 李光明, 钟乐乐, 等. 铍的选矿研究现状和展望[J]. 有色金属(选矿部分), 2022(6): 17−24.

    Mao S R, Li G M, Zhong L L, et al. Present situation and prospect of mineral processing of beryllium[J]. Nonferrous Metals (Mineral Processing Section), 2022(6): 17−24.
    [7]
    胡欢, 王汝成, 车旭东, 等. 关键金属元素铍的原位分析技术研究进展[J]. 岩石学报, 2022, 38(7): 1890−1900. doi: 10.18654/1000-0569/2022.07.05

    Hu H, Wang R C, Che X D, et al. Research progress of in situ analysis technology of key metal element beryllium[J]. Acta Petrologica Sinica, 2022, 38(7): 1890−1900. doi: 10.18654/1000-0569/2022.07.05
    [8]
    贾福东, 张长青, 化志新, 等. 云南麻花坪钨铍矿床蓝柱石的鉴定特征及成分与成因分析[J]. 光谱学与光谱分析, 2020, 40(10): 3185−3192.

    Jia F D, Zhang C Q, Hua Z X, et al. Identification characteristics, composition and genesis of euclase in Mahuaping tungsten-beryllium polymetallic deposit in Yunnan Province, Southwest China[J]. Spectroscopy and Spectral Analysis, 2020, 40(10): 3185−3192.
    [9]
    李娜, 高爱红, 王小宁. 全球铍资源供需形势及建议[J]. 中国矿业, 2019, 28(4): 69−73.

    Li N, Gao A H, Wang X N. Global beryllium supply and demand trends and its enlightenment[J]. China Mining Magazine, 2019, 28(4): 69−73.
    [10]
    王应平, 秦红艳, 段玲敏, 等. 铬天青S差示光度法测定铍精矿、绿柱石中氧化铍量[J]. 云南化工, 2023, 50(3): 80−82.

    Wang Y P, Qin H Y, Duan L M, et al. Determination of beryllium oxide in beryllium concentrate and beryl by chromazurol S differential spectrophotometry[J]. Yunnan Chemical Technology, 2023, 50(3): 80−82.
    [11]
    Manousi N, Kabir A, Furton K G, et al. Dual lab-in-syringe flow-batch platform for automatic fabric disk sorptive extraction/back-extraction as a front end to inductively coupled plasma atomic emission spectrometry[J]. Analytical Chemistry, 2022, 94(38): 12943−12947. doi: 10.1021/acs.analchem.2c02268
    [12]
    贾雷, 左修源. 四酸密闭消解-电感耦合等离子体质谱(ICP-MS)法测定铀矿中的铼和钪[J]. 中国无机分析化学, 2023, 13(5): 469−474. doi: 10.3969/j.issn.2095-1035.2023.05.010

    Jia L, Zuo X Y. Determination of rhenium and scandium in uranium ores by inductively coupled plasma-mass spectrometry (ICP-MS) with tetraacid confinement ablation[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(5): 469−474. doi: 10.3969/j.issn.2095-1035.2023.05.010
    [13]
    Vievard J, Amoikon T L, Coulibaly N A, et al. Extraction and quantification of pesticides and metals in palm wines by HS-SPME/GC-MS and ICP-AES/MS[J]. Food Chemistry, 2022, 393: 133352. doi: 10.1016/j.foodchem.2022.133352
    [14]
    龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340−348.

    Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340−348.
    [15]
    郝冬梅, 张翼明, 许涛, 等. ICP-MS法测定稀土铌钽矿中铍、铀、铌、钽、锆、铪量[J]. 稀土, 2010, 31(5): 67−69. doi: 10.3969/j.issn.1004-0277.2010.05.014

    Hao D M, Zhang Y M, Xu T, et al. Determination of beryllium, uranium, niobium, tartalum, zirconium and hafnium in rare earth-niobium-tartalum mineral by ICP-MS[J]. Chinese Rare Earths, 2010, 31(5): 67−69. doi: 10.3969/j.issn.1004-0277.2010.05.014
    [16]
    Zeng Y, Yokoyama Y, Hirabayashi S, et al. A rapid and precise method of establishing age model for coral skeletal radiocarbon to study surface oceanography using coupled X-ray photos and ICP-AES measurement[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2022, 533: 23−28.
    [17]
    窦向丽, 张旺强, 黑文龙, 等. 敞开酸溶-电感耦合等离子体发射光谱法测定石煤钒矿中钒铁铝磷[J]. 岩矿测试, 2022, 41(4): 673−679.

    Dou X L, Zhang W Q, Hei W L, et al. Determination of vanadium, iron, aluminum and phosphorus in stone coal vanadium ore by ICP-OES with open acid dissolution[J]. Rock and Mineral Analysis, 2022, 41(4): 673−679.
    [18]
    Erickson B. Product review: ICP-AES remains competitive[J]. Analytical Chemistry, 1998, 70(5): 211A−215A. doi: 10.1021/ac9817725
    [19]
    向吉锋, 孔亚君. ICP法测定铍矿中氧化铍含量[J]. 中国石油和化工标准与质量, 2014, 34(4): 21.

    Xiang J F, Kong Y J. Determination of beryllium oxide in beryllium by inductively coupled plasma[J]. China Petroleum and Chemical Standard and Quality, 2014, 34(4): 21.
    [20]
    常学东. 测定稀有金属矿中锂、铍、铌、钽的方法选择[J]. 新疆有色金属, 2016, 39(3): 64−66.

    Chang X D. Determination method selection of lithium, beryllium, niobium and tantalum in rare metal ores[J]. Xinjiang Nonferrous Metals, 2016, 39(3): 64−66.
    [21]
    杨萍, 陈云红. ICP-AES法测定矿石中的BeO[J]. 分析试验室, 2002, 21(5): 16−17.

    Yang P, Chen Y H. Determination of BeO in ores by ICP-AES[J]. Analytical Laboratory, 2002, 21(5): 16−17.
    [22]
    高晶晶, 刘季花, 张辉, 等. 高压密闭消解-电感耦合等离子体质谱法测定海洋沉积物中稀土元素[J]. 岩矿测试, 2012, 31(3): 425−429.

    Gao J J, Liu J H, Zhang H, et al. Determination of rare earth elements in the marine sediments by inductively coupled plasma-mass spectrometry with high-pressure closed digestion[J]. Rock and Mineral Analysis, 2012, 31(3): 425−429.
    [23]
    戴长文, 何小姣. 碱熔-等离子体发射光谱法测定铍矿石中铍[J]. 世界有色金属, 2020(4): 163−164.

    Dai C W, He X J. Determination of beryllium in beryllium ore by alkali fusion ICP-AES[J]. World Nonferrous Metals, 2020(4): 163−164.
    [24]
    李志伟, 赵晓亮, 李珍, 等. 敞口酸熔-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素[J]. 岩矿测试, 2017, 36(6): 594−600.

    Li Z W, Zhao X L, Li Z, et al. Determination of niobium, tantalum and associated elements in niobium-tantalum ore by inductively coupled plasma-optical emission spectrometry with open acid dissolution[J]. Rock and Mineral Analysis, 2017, 36(6): 594−600.
    [25]
    赵学沛. 多种酸溶矿ICP-AES测定稀有金属矿中锂铍铌钽锡[J]. 化学研究与应用, 2017, 29(11): 1714−1718.

    Zhao X P. Determination of lithium, beryllium, niobium and tantalum in rare metal ores by four acid soluble ICP-AES[J]. Chemical Research and Application, 2017, 29(11): 1714−1718.
    [26]
    吴刚. 酸溶法、碱熔法ICP-AES/MS分析测定矿石中的稀有元素[D]. 保定: 河北大学, 2018: 21−25.

    Wu G. Determination of rare elements in the minerals with acid-leaching method and alkali-fusion method by ICP-AES/MS[D]. Baoding: Hebei University, 2018: 21−25.
    [27]
    徐洪柳. 电感耦合等离子体原子发射光谱(ICP-AES)法测定尼日利亚铌钽锂矿石中的铌、钽、锂[J]. 中国无机分析化学, 2020, 10(3): 33−38. doi: 10.3969/j.issn.2095-1035.2020.03.007

    Xu H L. Determination of niobium, tantalum and lithium in niobium-tantalum-lithium ore from nigeria by inductively coupled plasma atomic emission spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(3): 33−38. doi: 10.3969/j.issn.2095-1035.2020.03.007
    [28]
    《矿产资源工业要求手册》编委会. 矿产资源工业要求手册[M]. 北京: 地质出版社, 2014: 226.

    The Editorial Committee of “Mineral Resources Industry Requirements Manual”. Mineral Resources Industry Requirements Manual[M]. Beijing: Geological Publishing House, 2014: 226.
    [29]
    《岩石矿物分析》编委会. 岩石矿物分析(第四版 第三分册)[M]. 北京: 地质出版社, 2011: 303-315.

    The Editorial Committee of “Rock and Mineral Analysis”. Rock and Mineral Analysis (The 4th Edition, Volume Ⅲ) [M]. Beijing: Geological Publishing House, 2011: 303-315.

Catalog

    Article views (164) PDF downloads (41) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return