• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
SUN Huizhong,AN Ziyi,XU Chunxue,et al. The Current Status and Development Demand Analysis of Certified Reference Materials for Strategic Critical Metal Minerals[J]. Rock and Mineral Analysis,2024,43(2):375−396. DOI: 10.15898/j.ykcs.202308030121
Citation: SUN Huizhong,AN Ziyi,XU Chunxue,et al. The Current Status and Development Demand Analysis of Certified Reference Materials for Strategic Critical Metal Minerals[J]. Rock and Mineral Analysis,2024,43(2):375−396. DOI: 10.15898/j.ykcs.202308030121

The Current Status and Development Demand Analysis of Certified Reference Materials for Strategic Critical Metal Minerals

More Information
  • Received Date: August 02, 2023
  • Revised Date: January 24, 2024
  • Accepted Date: January 29, 2024
  • Available Online: April 28, 2024
  • Certified reference materials (CRMs) are used as the basis for verifying authenticity to obtain accurate and reliable sample analysis results of strategic critical metal minerals. Over three hundred critical metal ore CRMs have been produced in China during the past decades, including most mineral varieties and mineralizing types of metals such as ferrous, non-ferrous, precious, rare, rare earth, and dispersed, and have played an important role in research, exploration, and exploitation of China’s strategic metallic mineral resources. From 1984 to 2021, the number of first-class critical metal ore CRMs increased steadily (25 every five years), and the number of second-class national CRMs increased significantly in the past decade (60 every five years). Compared with metallogenetic elements, the property values of CRMs have more focus on the elements related to new energy and comprehensive utilization. Although the number and production techniques of critical metal ore CRMs have improved in recent years, they still have limitations: (1) CRMs for boundary and minimum industrial grades non-ferrous metal ore (such as tungsten ore, tin ore, and cobalt ore) are incomplete. (2) Only a few types and quantities of CRMs are available for the analysis of rare, rare earth and dispersed elements, which is unable to meet the demand. (3) The theoretical basis of the development of CRMs such as chemical phase analysis, in situ analysis, and field on site analysis is relatively weak. Based on the shortcomings of available CRMs for strategic metal minerals, it propose that the production of further CRMs should satisfy the demands for mineral analysis of the supply chain from mining to manufacturing. Meanwhile, more research on production and certification of CRMs for isotope analysis, in situ analysis and field on site analysis should be carried out to provide quality assurance and analysis technical assistance for strategic mineral exploration, mining, processing, and smelting.

  • [1]
    Kielbasa A, Gadzala-Kopciuch R, Buszewski B. Reference materials: Significance, general requirements, and demand[J]. Critical Reviews in Analytical Chemistry, 2016, 46(3): 224−235. doi: 10.1080/10408347.2015.1045120
    [2]
    Vasil Eva I E, Shabanova E V. Certified reference materials of geological and environmental objects: Problems and solutions[J]. Journal of Analytical Chemistry, 2017, 72(2): 129−146. doi: 10.1134/S1061934817020149
    [3]
    翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106−111.

    Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106−111.
    [4]
    王安建, 袁小晶. 大国竞争背景下的中国战略性关键矿产资源安全思考[J]. 中国科学院院刊, 2022, 37(11): 1550−1559.

    Wang A J, Yuan X J. Security of China’s strategic and critical minerals under background of great power competition[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(11): 1550−1559.
    [5]
    李建武, 李天骄, 贾宏翔, 等. 中国战略性关键矿产目录厘定[J]. 地球学报, 2023, 44(2): 261−270. doi: 10.3975/cagsb.2022.112801

    Li J W, Li T J, Jia H X, et al. Determination of China’s strategic and critical minerals list[J]. Acta Geoscientica Sinica, 2023, 44(2): 261−270. doi: 10.3975/cagsb.2022.112801
    [6]
    耿学道, 金慧明. 锰矿石系列标准物质的研制[J]. 中国锰业, 2000, 18(4): 44−48. doi: 10.3969/j.issn.1002-4336.2000.04.012

    Geng X D, Jin H M. Preparation of series of certified reference materials of manganese ores[J]. China’s Manganese Industry, 2000, 18(4): 44−48. doi: 10.3969/j.issn.1002-4336.2000.04.012
    [7]
    王干珍, 彭君, 李力, 等. 锰矿石成分分析标准物质研制[J]. 岩矿测试, 2022, 41(2): 314−323. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202016

    Wang G Z, Peng J, Li L, et al. Preparation of standard material for composition analysis of manganese ore[J]. Rock and Mineral Analysis, 2022, 41(2): 314−323. doi: 10.3969/j.issn.0254-5357.2022.2.ykcs202202016
    [8]
    黄宏库, 程志中, 刘妹, 等. 铬铁矿标准物质研制[J]. 化学分析计量, 2010, 19(5): 4−6. doi: 10.3969/j.issn.1008-6145.2010.05.001

    Huang H K, Cheng Z Z, Liu M, et al. Development of reference materials of chrimote[J]. Chemical Analysis and Meterage, 2010, 19(5): 4−6. doi: 10.3969/j.issn.1008-6145.2010.05.001
    [9]
    Cheng Z, Huang H, Liu M, et al. Preparation of four chromium ore reference materials[J]. Geostandards and Geoanalytical Research, 2013, 37(1): 95−101. doi: 10.1111/j.1751-908X.2012.00162.x
    [10]
    田宗平, 彭君, 王干珍, 等. 石煤钒矿成分分析标准物质的研制[J]. 岩矿测试, 2021, 40(1): 111−120.

    Tian Z P, Peng J, Wang G Z, et al. Preparation of standard materials for composition analysis of stone coal vanadium ore[J]. Rock and Mineral Analysis, 2021, 40(1): 111−120.
    [11]
    魏智如. 黑色金属矿产工业指标的变化与分析[J]. 国土资源情报, 2015(5): 42−47.

    Wei Z R. A discussion on industrial indices variations of ferrous metallic mineral resources[J]. Land and Resources Information, 2015(5): 42−47.
    [12]
    夏传波, 王卿, 张文娟, 等. 钛矿石化学成分及物相分析方法研究进展[J]. 冶金分析, 2021, 41(11): 21−30.

    Xia C B, Wang Q, Zhang W J, et al. Chemical phase analysis of iron in ilmenite ores[J]. Metallurgical Analysis, 2021, 41(11): 21−30.
    [13]
    顾铁新, 卜维, 史长义, 等. 铜铅锌(银)矿石与精矿标准物质的研制[J]. 有色金属, 2005(1): 88−93.

    Gu T X, Bu W, Shi C Y, et al. Certified reference materials preparation of copper, lead and zinc (silver) ores and concentrates[J]. Nonferrous Metals, 2005(1): 88−93.
    [14]
    董学林, 熊玉祥, 肖宇鹰, 等. 高品位多金属矿石成分分析标准物质研制[J]. 资源环境与工程, 2021, 35(6): 905−913.

    Dong X L, Xiong Y X, Xiao Y Y, et al. Development of standard material for composition analysis of high grade polymetallic ore[J]. Resources Environment & Engineering, 2021, 35(6): 905−913.
    [15]
    Cheng Z, Liu M, Huang H, et al. Usable values of nickel ore and nickel concentrate certified reference materials[J]. Geostandards and Geoanalytical Research, 2015, 39(2): 221−232. doi: 10.1111/j.1751-908X.2014.00261.x
    [16]
    Liu M, Cheng Z, Huang H, et al. Certified reference materials of molybdenum ore and molybdenum concentrate (GBW07141, GBW07142, GBW07143 and GBW07144)[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 549−557. doi: 10.1111/ggr.12219
    [17]
    刘凯, 张太平, 魏科, 等. 5种钼矿石和钼精矿成分分析标准物质的研制[J]. 冶金标准化与质量, 2023, 61(1): 1−7. doi: 10.3969/j.issn.1003-0514.2023.01.001

    Liu K, Zhang T P, Wei K, et al. Development of five certified reference materials of molybdenum ore and molybdenum concentrate for chemical analysis[J]. Metallurgical Standardization & Quality, 2023, 61(1): 1−7. doi: 10.3969/j.issn.1003-0514.2023.01.001
    [18]
    Gu T, Zhang Z, Wang C, et al. Preparation and certification of high-grade gold ore reference materials (GAu 19-22)[J]. Geostandards Newsletter, 2001, 25(1): 153−158. doi: 10.1111/j.1751-908X.2001.tb00970.x
    [19]
    罗学辉, 陈占生, 张勇, 等. 国家金矿石标准物质定值分析[J]. 黄金, 2011, 32(5): 59−61. doi: 10.3969/j.issn.1001-1277.2011.05.016

    Luo X H, Chen Z S, Zhang Y, et al. Value testing of national certified reference materials of gold ore samples[J]. Gold, 2011, 32(5): 59−61. doi: 10.3969/j.issn.1001-1277.2011.05.016
    [20]
    杨理勤, 陈占生, 李玄辉, 等. 金矿样品中金的粒度判定及在标准物质研制中的应用[J]. 贵金属, 2016, 37(1): 63−67. doi: 10.3969/j.issn.1004-0676.2016.01.013

    Yang L Q, Chen Z S, Li X H, et al. Gold particle size determination method and application for the preparation of reference materials[J]. Precious Metals, 2016, 37(1): 63−67. doi: 10.3969/j.issn.1004-0676.2016.01.013
    [21]
    杨理勤, 陈占生, 谢璐, 等. 卡林型金矿金砷成分分析标准物质研制[J]. 岩矿测试, 2018, 37(2): 209−216.

    Yang L Q, Chen Z S, Xie L, et al. Preparation of gold and arsenic certified reference materials for chemical composition analysis in carlin-type gold deposits[J]. Rock and Mineral Analysis, 2018, 37(2): 209−216.
    [22]
    赵可迪, 芦新根, 洪博, 等. 金矿石及金精矿砷成分分析标准物质的研制[J]. 黄金, 2021, 42(9): 106−111.

    Zhao K D, Lu X G, Hong B, et al. Development of reference materials for arsenic content analysis in gold ores and concentrates[J]. Gold, 2021, 42(9): 106−111.
    [23]
    Yan M, Wang C, Gu T, et al. Platinum-group element geochemical certified reference materials (GPt1-7)[J]. Geostandards and Geoanalytical Research, 1998, 22(2): 235−246. doi: 10.1111/j.1751-908X.1998.tb00696.x
    [24]
    顾铁新, 汪世联, 鄢卫东. 铂族元素系列地球化学标准物质研制[J]. 黄金, 2006, 27(7): 42−47. doi: 10.3969/j.issn.1001-1277.2006.07.012

    Gu T X, Wang S L, Yan W D. Research on the geochemical standardized materials for the metals of Pt group[J]. Gold, 2006, 27(7): 42−47. doi: 10.3969/j.issn.1001-1277.2006.07.012
    [25]
    冯静. 稀土矿石成分分析标准物质的研制[J]. 化学分析计量, 2005, 14(4): 1−3, 27. doi: 10.3969/j.issn.1008-6145.2005.04.001

    Feng J. Development of the certified reference material for composition analysis of rare earth ores[J]. Chemical Analysis and Meterage, 2005, 14(4): 1−3, 27. doi: 10.3969/j.issn.1008-6145.2005.04.001
    [26]
    闵广全, 张世涛, 杨光, 等. 锗矿石和铟矿石化学成分分析标准物质研制[J]. 岩矿测试, 2015, 34(3): 335−339.

    Min G Q, Zhang S T, Yang G, et al. The preparation of reference materials for germanium and indium ores[J]. Rock and Mineral Analysis, 2015, 34(3): 335−339.
    [27]
    张激光. 稀散元素镓矿石标准物质的制备与定值[J]. 化学与粘合, 2017, 39(1): 68−71. doi: 10.3969/j.issn.1001-0017.2017.01.019

    Zhang J G. Preparation and certification of dispersed element gallium ore reference materials[J]. Chemistry and Adhesion, 2017, 39(1): 68−71. doi: 10.3969/j.issn.1001-0017.2017.01.019
    [28]
    何海洋, 曲少鹏, 黄钢, 等. 氢化物发生-原子荧光光谱法测定稀土矿石中的锗[J]. 稀土, 2019, 40(2): 113−119.

    He H Y, Qu S P, Huang G, et al. Determination of germanium in rare earth ore by hydride generation-atomic fluorescence spectrometry[J]. Chinese Rare Earths, 2019, 40(2): 113−119.
    [29]
    鲁海妍, 谢海东, 孔晓彦. 碱熔酸化-原子荧光光谱法测定多金属矿石中的锡[J]. 当代化工, 2022, 51(6): 1504−1508. doi: 10.3969/j.issn.1671-0460.2022.06.052

    Lu H Y, Xie H D, Kong X Y. Determination of tin in polymetallic ores by alkali fusion acidification-atomic fluorescence spectroscopy[J]. Contemporary Chemical Industry, 2022, 51(6): 1504−1508. doi: 10.3969/j.issn.1671-0460.2022.06.052
    [30]
    舒祥清. 原子吸收分光光度法在矿石矿物分析中的应用[J]. 世界有色金属, 2021(10): 111−112.

    Shu X Q. Application of atomic absorption spectrophotometry in mineral analysis of ores[J]. World Nonferrous Metals, 2021(10): 111−112.
    [31]
    邵坤, 范建雄, 郑浩, 等. 封闭酸溶-泡塑富集火焰原子吸收光谱法测定矿石中金[J]. 矿产综合利用, 2023(4): 182−187. doi: 10.3969/j.issn.1000-6532.2023.04.028

    Shao K, Fan J X, Zheng H, et al. Determination of gold in ore samples by flame atomic absorption spectrometry of sealed dissolution after adsorption using polyurethane foam[J]. Multipurpose Utilization of Mineral Resources, 2023(4): 182−187. doi: 10.3969/j.issn.1000-6532.2023.04.028
    [32]
    王小强, 梁倩, 赵亚男, 等. 火焰原子吸收光谱法测定锑矿石中锑[J]. 冶金分析, 2023, 43(3): 57−63.

    Wang X Q, Liang Q, Zhao Y N, et al. Determination of antimony in antimony ore by flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2023, 43(3): 57−63.
    [33]
    杨德明, 申宁, 王倩. 火焰原子吸收光谱法测定低品位金矿石中金[J]. 黄金, 2023, 44(6): 98−101. doi: 10.11792/hj20230620

    Yang D M, Shen N, Wang Q. Determination of gold in low-grade gold ores by flame atomic absorption spectrometry[J]. Gold, 2023, 44(6): 98−101. doi: 10.11792/hj20230620
    [34]
    王祎亚, 邓赛文, 王毅民, 等. X射线荧光光谱在痕量和超轻元素分析中的应用评介[J]. 冶金分析, 2020, 40(10): 12−31.

    Wang Y Y, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in trace and ultra-light elements analysis[J]. Metallurgical Analysis, 2020, 40(10): 12−31.
    [35]
    邓赛文, 王毅民, 孙晓飞, 等. X射线荧光光谱技术在铁矿石分析中的应用文献评介[J]. 冶金分析, 2019, 39(11): 30−49.

    Deng S W, Wang Y M, Sun X F, et al. Literature review on application of X-ray fluorescence spectrometry in analysis of iron ores[J]. Metallurgical Analysis, 2019, 39(11): 30−49.
    [36]
    李松, 李小莉, 王毅民, 等. X射线荧光光谱在钒钛磁铁矿分析中应用文献评介[J]. 冶金分析, 2023, 43(5): 52−60.

    Li S, Li X L, Wang Y M, et al. Review on application of X-ray fluorescence spectrometry in vanadium-titanium magnetite analysis[J]. Metallurgical Analysis, 2023, 43(5): 52−60.
    [37]
    王祎亚, 张中, 王毅民, 等. X射线荧光光谱在标准物质和标准方法研究中的应用评介[J]. 冶金分析, 2020, 40(10): 99−110.

    Wang Y Y, Zhang Z, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in geological reference materials and standard methods[J]. Metallurgical Analysis, 2020, 40(10): 99−110.
    [38]
    王毅民, 邓赛文, 王祎亚, 等. X射线荧光光谱在矿石分析中的应用评介——总论[J]. 冶金分析, 2020, 40(10): 32−49.

    Wang Y M, Deng S W, Wang Y Y, et al. Review on the application of X-ray fluorescence spectrometry in ores’ analysis[J]. Metallurgical Analysis, 2020, 40(10): 32−49.
    [39]
    王祎亚, 高新华, 王毅民, 等. 地质材料稀土元素的X射线荧光分析文献评介[J]. 光谱学与光谱分析, 2020, 40(11): 3341−3352.

    Wang Y Y, Gao X H, Wang Y M, et al. Review on the literature of X-ray fluorescence analysis of rare earth elements in geological materials[J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 3341−3352.
    [40]
    刘永超, 李岩峰. 中子活化分析仪在铜矿石在线检测的应用[J]. 现代矿业, 2023, 39(6): 10−12. doi: 10.3969/j.issn.1674-6082.2023.06.003

    Liu Y C, Li Y F. Application of neutron activation analyzer in copper ore on-line detection[J]. Modern Mining, 2023, 39(6): 10−12. doi: 10.3969/j.issn.1674-6082.2023.06.003
    [41]
    Xiao C, Yao Y, Jin X, et al. K0-NAA for determination of REE in reference materials of ore sources[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311(2): 1287−1289. doi: 10.1007/s10967-016-5157-y
    [42]
    伍月, 鞠楠, 张森, 等. 铼矿分布特点、主要类型与勘查开发现状[J]. 中国地质, 2023, 50(1): 133−145. doi: 10.12029/gc20211019001

    Wu Y, Ju N, Zhang S, et al. The distribution features, main types and present situation of exploration and development for rhenium[J]. Geology in China, 2023, 50(1): 133−145. doi: 10.12029/gc20211019001
    [43]
    张森, 鞠楠, 伍月, 等. 铍矿分布特点、主要类型与勘查开发现状[J]. 中国地质, 2023, 50(2): 410−424.

    Zhang S, Ju N, Wu Y, et al. Distribution characteristics, main types and exploration and development status of beryllium deposit[J]. Geology in China, 2023, 50(2): 410−424.
    [44]
    Dai S, Finkelman R B, French D, et al. Modes of occurrence of elements in coal: A critical evaluation[J]. Earth-Science Reviews, 2021, 222: 103815. doi: 10.1016/j.earscirev.2021.103815
    [45]
    Dai S, Finkelman R B. Coal as a promising source of critical elements: Progress and future prospects[J]. International Journal of Coal Geology, 2018, 186: 155−164. doi: 10.1016/j.coal.2017.06.005
    [46]
    代世峰, 赵蕾, 魏强, 等. 中国煤系中关键金属资源: 富集类型与分布[J]. 科学通报, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112

    Dai S F, Zhao L, Wei Q, et al. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution[J]. Chinese Science Bulletin, 2020, 65(33): 3715−3729. doi: 10.1360/TB-2020-0112
    [47]
    王辉, 张福强, 张德高, 等. 黏土型锂矿床勘查开发过程中的瓶颈问题和若干思考[J]. 地质论评, 2023, 69(4): 1298−1312.

    Wang H, Zhang F Q, Zhang D G, et al. The bottleneck problem and some thoughts on the process of exploration and development of clay-type lithium deposit[J]. Geological Review, 2023, 69(4): 1298−1312.
    [48]
    温汉捷, 罗重光, 杜胜江, 等. 碳酸盐黏土型锂资源的发现及意义[J]. 科学通报, 2020, 65(1): 53−59. doi: 10.1360/TB-2019-0179

    Wen H J, Luo C G, Du S J, et al. Carbonate-hosted clay-type lithium deposit and its prospecting significance[J]. Chinese Science Bulletin, 2020, 65(1): 53−59. doi: 10.1360/TB-2019-0179
    [49]
    刘妹. 中国地质标准物质研制进展[J]. 岩矿测试, 2023, 42(3): 445−463.

    Liu M. Research progress of geological reference materials in China[J]. Rock and Mineral Analysis, 2023, 42(3): 445−463.
    [50]
    夏传波, 张文娟, 姜云, 等. 钛铁矿石中铁的化学物相分析[J]. 冶金分析, 2023, 43(7): 60−68.

    Xia C B, Zhang W J, Jiang Y, et al. Chemical phase analysis of iron in ilmenite ores[J]. Metallurgical Analysis, 2023, 43(7): 60−68.
    [51]
    李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669.

    Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669.
    [52]
    Cook N, Ciobanu C, Ehrig K, et al. Advances and opportunities in ore mineralogy[J]. Minerals, 2017, 7(12): 233. doi: 10.3390/min7120233
    [53]
    祁海, 马冲先, 张培志, 等. 原位微区分析标准样品制备技术的研究进展[J]. 理化检验(化学分册), 2020, 56(8): 938−944.

    Qi H, Ma C X, Zhang P Z, et al. Research progress of preparation techniques of reference materials for in-situ micro-area analysis[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(8): 938−944.
    [54]
    王松, 高钰涯, 王军, 等. 微区原位元素及同位素分析标准物质研究进展[J]. 质谱学报, 2021, 42(5): 641−655.

    Wang S, Gao Y Y, Wang J, et al. Recent progress of reference materials for in-situ elemental and isotopic microanalysis[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 641−655.
    [55]
    张红梅. 野外现场地质实验分析技术及应用研究[J]. 世界有色金属, 2018(21): 251−252. doi: 10.3969/j.issn.1002-5065.2018.21.151

    Zhang H M. Field geological experiments and analysis technology and its application[J]. World Nonferrous Metals, 2018(21): 251−252. doi: 10.3969/j.issn.1002-5065.2018.21.151
    [56]
    马静艳, 唐力君, 劳昌玲, 等. 野外现场地质实验分析技术及应用[J]. 分析仪器, 2018(1): 12−19. doi: 10.3969/j.issn.1001-232x.2018.01.003

    Ma J Y, Tang L J, Lao C L, et al. Field on-site geological analytical technique and its application[J]. Analytical Instrumentation, 2018(1): 12−19. doi: 10.3969/j.issn.1001-232x.2018.01.003
    [57]
    李松, 李小莉, 王毅民, 等. 中国地质标准物质40年文献评介[J]. 冶金分析, 2023, 43(8): 38−48.

    Li S, Li X L, Wang Y M, et al. Literature review of geochemical reference material of China for 40 years[J]. Metallurgical Analysis, 2023, 43(8): 38−48.
    [58]
    王毅民, 王晓红, 高玉淑, 等. 中国地质标准物质文献(1980~2010)综述[J]. 地质通报, 2011, 30(9): 1450−1461. doi: 10.3969/j.issn.1671-2552.2011.09.015

    Wang Y M, Wang X H, Gao Y S, et al. A review of the literature (1980—2010) of geochemical reference material of China[J]. Geological Bulletin of China, 2011, 30(9): 1450−1461. doi: 10.3969/j.issn.1671-2552.2011.09.015
    [59]
    Weis U, Stoll B, Hell K, et al. Geostandards and geoanalytical research bibliographic review 2021[J]. Geostandards and Geoanalytical Research, 2022, 46(4): 753−759. doi: 10.1111/ggr.12466
  • Cited by

    Periodical cited type(1)

    1. 牛爱钰,李欣,刘菲,杨珊珊. 溶解性二价铁-铁氧化物非均相体系氧化还原电位的电化学测定方法探究. 岩矿测试. 2024(03): 407-416 . 本站查看

    Other cited types(0)

Catalog

    Article views (169) PDF downloads (67) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return