• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
WEI Yuqiu,HU Yating,ZHOU Lian,et al. High Precision Strontium Isotope Measurement of Rock Standard Materials by Multi-dynamic TIMS[J]. Rock and Mineral Analysis,2023,42(5):944−956. DOI: 10.15898/j.ykcs.202308020120
Citation: WEI Yuqiu,HU Yating,ZHOU Lian,et al. High Precision Strontium Isotope Measurement of Rock Standard Materials by Multi-dynamic TIMS[J]. Rock and Mineral Analysis,2023,42(5):944−956. DOI: 10.15898/j.ykcs.202308020120

High Precision Strontium Isotope Measurement of Rock Standard Materials by Multi-dynamic TIMS

More Information
  • Received Date: August 01, 2023
  • Revised Date: September 09, 2023
  • Accepted Date: September 16, 2023
  • Available Online: November 07, 2023
  • BACKGROUND

    Strontium isotopes are a powerful geochemical indicator for tracing the sources and ages of ore-forming materials. TIMS is internationally recognized as the “gold standard” for determining Sr isotopic compositions, however, its analysis accuracy is severely limited by the attenuation of Faraday cup efficiency. How to effectively eliminate the influence of Faraday cup efficiency change is the key to improving the accuracy of Sr isotopes measured by TIMS. In addition, matrix reference materials are crucial for validating measurements on geological samples. Therefore, it is necessary to calibrate the Sr isotope composition of new geological reference materials to replace the unavailable standards (e.g., USGS).

    OBJECTIVES

    To develop a high-precision Sr isotope analysis method using multi-dynamic TIMS and accurately calibrate a set of GBW reference materials with varying sample matrices.

    METHODS

    Samples were completely digested by the high-pressure bomb method. Complete separation of Sr from sample matrices was accomplished through a two-stage column separation method consisting of ion exchange resin (AG 50X-12) and extraction resin (Sr spec). Sr isotopes were measured using a multi-collector TIMS and collected in a three-lines cup configuration. The internal normalization method was used to correct for instrument mass bias, and the multi-dynamic collection method was employed to mitigate the effects of Faraday cup efficiency drift.

    RESULTS

    (1) Significant Faraday cup deterioration (up to 160μg/g on C cup) was observed during an 8 months Sr isotope analytical session. Nevertheless, the results from the Monte Carlo simulation indicate that the multi-dynamic collection method can eliminate 99.6% of the cup coefficient effect. Moreover, long-term testing of NBS987 shows that employing the multi-dynamic collection method results in an instrumental precision of 8μg/g, which is 2-3 times more accurate than traditional static collection methods. Overall, results from both theoretical predictions and practical testing confirmed that the multi-dynamic collection method can effectively eliminate the effects of the cup effect drift. (2) The Sr recovery of the leaching experiments for BCR-2 and BHVO-2 with AG 50W-X8 resin column were 99.16% and 98.91%, respectively. The total Sr recovery of the two-stage columns was as high as 95%, thus preventing any potential Sr isotope fractionation resulting from Sr losses during the column separation process. Furthermore, the total blank throughout the entire procedure was no higher than 150pg for Sr, which was negligible compared to the large sample size. (3) High precision Sr isotope compositions were determined for 13 geological reference samples with various sample matrices, resulting in 87Sr/86Sr ratio measurements ranging from 0.704078 to 0.807402. Among these results, GBW07104, GBW07105, GBW07106, and GBW07108 were found to be consistent with previously reported values within the uncertainties and the other nine reference materials were reported herein for the first time.

    CONCLUTIONS

    The cup effect can significantly impact the Sr isotope measured by MC-TIMS, but it can be effectively mitigated by using a multi-dynamic collection method. Furthermore, independent test results demonstrate the uniformity of the Sr isotope composition in these GBW standards, rendering them suitable for both quality control and interlaboratory comparison purposes.

  • [1]
    韦刚健, 刘颖, 涂湘林, 等. 利用选择性特效树脂富集分离岩石样品中的锶钐和钕[J]. 岩矿测试, 2004, 23(1): 11−14. doi: 10.3969/j.issn.0254-5357.2004.01.003

    Wei G J, Liu Y, Tu X L, et al. Separation of Sr, Sm and Nd in mineral and rock samples using selective specific resins[J]. Rock and Mineral Analysis, 2004, 23(1): 11−14. doi: 10.3969/j.issn.0254-5357.2004.01.003
    [2]
    赵葵东, 蒋少涌. 金属矿床的同位素直接定年方法[J]. 地学前缘, 2004, 11(2): 425−434. doi: 10.3321/j.issn:1005-2321.2004.02.012

    Zhao K D, Jiang S Y. Direct isotope dating for metallic ore deposits[J]. Earth Science Frontiers, 2004, 11(2): 425−434. doi: 10.3321/j.issn:1005-2321.2004.02.012
    [3]
    Li C F, Chu Z Y, Wang X C, et al. Sr isotope analysis of picogram-level samples by thermal ionization mass spectrometry using a highly sensitive silicotungstic acid emitter[J]. Analytical Chemistry, 2019, 91(11): 7288−7294. doi: 10.1021/acs.analchem.9b00958
    [4]
    Yang Y H, Yang M, Jochum K P, et al. High-precision Sr-Nd-Hf-Pb isotopic composition of Chinese geological standard glass reference materials CGSG-1, CGSG-2, CGSG-4 and CGSG-5 by MC-ICP-MS and TIMS[J]. Geostandards and Geoanalytical Research, 2020, 44(3): 567−579. doi: 10.1111/ggr.12322
    [5]
    Luu T H, Gutiérrez P, Inglis E C, et al. High-precision Sr and Nd isotope measurements using a dynamic zoom lens-equipped thermal ionisation mass spectrometer[J]. Chemical Geology, 2022, 611: 121078. doi: 10.1016/j.chemgeo.2022.121078
    [6]
    Di Y, Krestianinov E, Zink S, et al. High-precision multidynamic Sr isotope analysis using thermal ionization mass spectrometer (TIMS) with correction of fractionation drift[J]. Chemical Geology, 2021, 582: 120411. doi: 10.1016/j.chemgeo.2021.120411
    [7]
    Thirlwall M F, Anczkiewicz R. Multidynamic isotope ratio analysis using MC-ICP-MS and the causes of secular drift in Hf, Nd and Pb isotope ratios[J]. International Journal of Mass Spectrometry, 2004, 235(1): 59−81. doi: 10.1016/j.ijms.2004.04.002
    [8]
    Makishima A, Nakamura E. Calibration of Faraday cup efficiency in a multicollector mass spectrometer[J]. Chemical Geology, 1991, 94(2): 105−110. doi: 10.1016/0168-9622(91)90003-F
    [9]
    Miyazaki T, Vaglarov B S, Kimura J I. Determination of relative Faraday cup efficiency factor using exponential law mass fractionation model for multiple collector thermal ionization mass spectrometry[J]. Geochemical Journal, 2016, 50(5): 445−447. doi: 10.2343/geochemj.2.0439
    [10]
    Krabbenhöft A, Fietzke J, Eisenhauer A, et al. Determination of radiogenic and stable strontium isotope ratios (87Sr/86Sr; δ88/86Sr) by thermal ionization mass spectrometry applying an 87Sr/84Sr double spike[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(9): 1267. doi: 10.1039/b906292k
    [11]
    Di Y, Li Z, Amelin Y. Monitoring and quantitative evaluation of Faraday cup deterioration in a thermal ionization mass spectrometer using multidynamic analyses of laboratory standards[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(7): 1489−1502. doi: 10.1039/D1JA00028D
    [12]
    Yobregat E, Fitoussi C, Bourdon B. A new method for TIMS high precision analysis of Ba and Sr isotopes for cosmochemical studies[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(7): 1388−1399. doi: 10.1039/C7JA00012J
    [13]
    Feng L, Zhou L, Yang L, et al. Optimization of double spike technique using peak jump collection by Monte Carlo method: An example for the determination of Ca isotope ratios[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(12): 2403−2411. doi: 10.1039/C5JA00203F
    [14]
    Yang L, Tong S, Zhou L, et al. A critical review on isotopic fractionation correction methods for accurate isotope amount ratio measurements by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(11): 1849−1861. doi: 10.1039/C8JA00210J
    [15]
    Guo K, Yu J, Fan D, et al. Precise determination of Sr and Nd isotopic compositions of Chinese standard reference samples GSR-1, GSR-2, GSR-3 and GBW07315 by TIMS[J]. Geosystems and Geoenvironment, 2023, 2(4): 100206. doi: 10.1016/j.geogeo.2023.100206
    [16]
    唐索寒, 李津, 潘辰旭, 等. 岩石铷-锶和钐-钕同位素标准物质的研制[J]. 岩矿测试, 2021, 40(2): 285−295. doi: 10.15898/j.cnki.11-2131/td.202011110140

    Tang S H, Li J, Pan C X, et al. Preparation of the reference materials for Rb-Sr and Sm-Nd isotope analysis[J]. Rock and Mineral Analysis, 2021, 40(2): 285−295. doi: 10.15898/j.cnki.11-2131/td.202011110140
    [17]
    Birck J L. Precision K-Rb-Sr isotopic analysis: Application to Rb-Sr chronology[J]. Chemical Geology, 1986, 56(1-2): 73−83. doi: 10.1016/0009-2541(86)90111-7
    [18]
    Charlier B L A, Ginibre C, Morgan D, et al. Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications[J]. Chemical Geology, 2006, 232(3-4): 114−133. doi: 10.1016/j.chemgeo.2006.02.015
    [19]
    Meynadier L, Gorge C, Birck J L, et al. Automated separation of Sr from natural water samples or carbonate rocks by high performance ion chromatography[J]. Chemical Geology, 2006, 227(1-2): 26−36. doi: 10.1016/j.chemgeo.2005.05.012
    [20]
    贺茂勇, 逯海, 金章东, 等. 人牙齿中锶的特效树脂分离及其同位素测定[J]. 分析化学, 2012, 40(7): 1109−1113.

    He M Y, Lu H, Jin Z D, et al. Separation and isotopic measurement of Sr in tooth samples using selective specific resins[J]. Chinese Journal of Analytical Chemistry, 2012, 40(7): 1109−1113.
    [21]
    Li C F, Li X H, Li Q L, et al. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J]. Analytica Chimica Acta, 2012, 727: 54−60. doi: 10.1016/j.aca.2012.03.040
    [22]
    刘文刚, 刘卉, 李国占, 等. 离子交换树脂在地质样品Sr-Nd同位素测定中的应用[J]. 地质学报, 2017, 91(11): 2584−2592. doi: 10.3969/j.issn.0001-5717.2017.11.013

    Liu W G, Liu H, Li G Z, et al. The apllication of ion exchange resins in Sr-Nd isotopic assay of geological samples[J]. Acta Geologica Sinica, 2017, 91(11): 2584−2592. doi: 10.3969/j.issn.0001-5717.2017.11.013
    [23]
    Yang Y H, Wu F Y, Liu Z C, et al. Evaluation of Sr chemical purification technique for natural geological samples using common cation-exchange and Sr-specific extraction chromatographic resin prior to MC-ICP-MS or TIMS measurement[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(3): 516−522. doi: 10.1039/c2ja10333h
    [24]
    Horwitz E P, Dietz M L, Fisher D E. Separation and preconcentration of strontium from biological, environmental, and nuclear waste samples by extraction chromatography using a crown ether[J]. Analytical Chemistry, 1991, 63(5): 522−525. doi: 10.1021/ac00005a027
    [25]
    Pin C, Gannoun A, Dupont A. Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(10): 1858−1870. doi: 10.1039/C4JA00169A
    [26]
    徐卓, 李力力, 朱留超, 等. Eichrom Sr树脂用于铀矿浓缩物中铅锶的分离富集研究[J]. 岩矿测试, 2019, 38(1): 55−61.

    Xu Z, Li L L, Zhu L C, et al. Application of Eichrom Sr resin to the separation and enrichment of lead and strontium in uranium ore concentrates[J]. Rock and Mineral Analysis, 2019, 38(1): 55−61.
    [27]
    Misawa K, Yamazaki F, Ihira N, et al. Separation of rare earth elements and strontium from chondritic meteorites by miniaturized extraction chromatography for elemental and isotopic analyses[J]. Geochemical Journal, 2000, 34(1): 11−21. doi: 10.2343/geochemj.34.11
    [28]
    Smet I, Muynck D D, Vanhaecke F, et al. From volcanic rock powder to Sr and Pb isotope ratios: A fit-for-purpose procedure for multi-collector ICP-mass spectrometric analysis[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1025−1032. doi: 10.1039/b926335g
    [29]
    Li C F, Chu Z Y, Guo J H, et al. A rapid single column separation scheme for high-precision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry[J]. Analytical Methods, 2015, 7(11): 4793−4802. doi: 10.1039/C4AY02896A
    [30]
    Wieser M E, Buhl D, Bouman C, et al. High precision calcium isotope ratio measurements using a magnetic sector multiple collector inductively coupled plasma mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(7): 844−851. doi: 10.1039/b403339f
    [31]
    Ludwig K R. Optimization of multicollector isotope-ratio measurement of strontium and neodymium[J]. Chemical Geology, 1997, 135(3-4): 325−334. doi: 10.1016/S0009-2541(96)00120-9
    [32]
    Holmden C, Bélanger N. Ca isotope cycling in a forested ecosystem[J]. Geochimica et Cosmochimica Acta, 2010, 74(3): 995−1015. doi: 10.1016/j.gca.2009.10.020
    [33]
    Wang Y, He Y, Wang Z N, et al. High-precision calcium isotope analysis on TIMS using a double spike technique: The instrumental drift and its correction[J]. Atomic Spectroscopy, 2023, 44(1): 45−54.
    [34]
    Yang Y H, Zhang H F, Chu Z Y, et al. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using multi-collector ICP-MS and TIMS[J]. International Journal of Mass Spectrometry, 2010, 290(2): 120−126.
    [35]
    杨林, 石震, 于慧敏, 等. 多接收电感耦合等离子体质谱法测定岩石和土壤等国家标准物质的硅同位素组成[J]. 岩矿测试, 2023, 42(1): 136−145. doi: 10.3969/j.issn.0254-5357.2023.1.ykcs202301010

    Yang L, Shi Z, Yu H M, et al. Determination of silicon isotopic compositions of rock and soil reference materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2023, 42(1): 136−145. doi: 10.3969/j.issn.0254-5357.2023.1.ykcs202301010
    [36]
    Liu F, Li X, Zhang Z, et al. Calcium isotope ratios ( δ44/40Ca) of thirty-four geological Chinese reference materials measured by thermal ionisation mass spectrometry (TIMS)[J]. Geostandards and Geoanalytical Research, 2022, 46(2): 307−319. doi: 10.1111/ggr.12418
    [37]
    Wu G, Zhu J M, Wang X, et al. High-sensitivity measurement of Cr isotopes by double spike MC-ICP-MS at the 10ng level[J]. Analytical Chemistry, 2020, 92(1): 1463−1469. doi: 10.1021/acs.analchem.9b04704
    [38]
    Chen X Q, Zeng Z, Yu H M, et al. Precise measurements of δ88/86Sr for twenty geological reference materials by double-spike MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2022, 479: 116883. doi: 10.1016/j.ijms.2022.116883
    [39]
    Fourny A, Weis D, Scoates J S. Comprehensive Pb-Sr-Nd-Hf isotopic, trace element, and mineralogical characterization of mafic to ultramafic rock reference materials[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(3): 739−773. doi: 10.1002/2015GC006181
    [40]
    Wu S, Yang Y, Jochum K P, et al. Isotopic compositions (Li-B-Si-O-Mg-Sr-Nd-Hf-Pb) and Fe2+/ΣFe ratios of three synthetic andesite glass reference materials (ARM-1, ARM-2, ARM-3)[J]. Geostandards and Geoanalytical Research, 2021, 45(4): 719−745. doi: 10.1111/ggr.12399
    [41]
    Zhang Z, Ma J, Zhang L, et al. Rubidium purification via a single chemical column and its isotope measurement on geological standard materials by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 322−328. doi: 10.1039/C7JA00406K
  • Cited by

    Periodical cited type(1)

    1. 刘文刚,魏双,张晓伟,张健,周红英. 氨水共沉淀法在锶同位素分析中的应用. 分析化学. 2025(01): 115-123 .

    Other cited types(0)

Catalog

    Article views (109) PDF downloads (34) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return