Citation: | FU Zhaodi,ZHANG Xiaojuan,YANG Lin. Chemical Phase Analysis of Lithium in Pegmatitic Lithium Ores[J]. Rock and Mineral Analysis,2024,43(3):432−439. DOI: 10.15898/j.ykcs.202307310114 |
Chemical phase analysis can provide important technical guidance for geological exploration, deposit evaluation and high efficiency metallurgy of lithium ore. Because many lithium minerals are very similar in chemical properties, there are no reports related to the chemical phase analysis of lithium ores. Pegmatitic lithium ore is an important kind of lithium ore, in which lepidolite and spodumene are important raw materials for extracting lithium. In this research, a method for chemical phase analysis of lithium in pegmatitic lithium ores was established to determine the content of lithium in each lithium mineral. The lithium was divided into three phases: zinnwaldite, lithium mica, and spodumene. Dilute hydrochloric acid was used to selectively leach lithium from zinnwaldite, concentrated sulfuric acid was used to dissolve lithium from lithium mica, and
[1] |
王秋舒, 元春华, 许虹. 全球锂矿资源分布与潜力分析[J]. 中国矿业, 2015, 24(2): 10−17. doi: 10.3969/j.issn.1004-4051.2015.02.005
Wang Q S, Yuan C H, Xu H. Analysis of the global lithium resource distribution and potential[J]. China Mining Magazine, 2015, 24(2): 10−17. doi: 10.3969/j.issn.1004-4051.2015.02.005
|
[2] |
付洪波, 吴边, 王华东, 等. 激光诱导击穿光谱定量分析锂矿石中锂元素[J]. 光谱学与光谱分析, 2022, 42(11): 3489−3493.
Fu H B, Wu B, Wang H D, et al. Quantitative analysis of lithium in lithium ore by laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(11): 3489−3493.
|
[3] |
张苏江, 张彦文, 张立伟, 等. 中国锂矿资源现状及其可持续发展策略[J]. 无机盐工业, 2020, 52(7): 1−7.
Zhang S Z, Zhang Y W, Zhang L W, et al. Present situation and sustainable development strategy of China’s lithium resources[J]. Inorganic Chemicals Industry, 2020, 52(7): 1−7.
|
[4] |
刘舒飞, 陈德稳, 李会谦. 中国锂资源产业现状及对策建议[J]. 资源与产业, 2016(2): 12−15.
Liu S F, Chen D W, Li H Q. Situation and suggestions of China’s lithium resources industry[J]. Resources & Industries, 2016(2): 12−15.
|
[5] |
刘丽君, 王登红, 刘喜方, 等. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 2017, 44(2): 263−278. doi: 10.12029/gc20170204
Liu L J, Wang D H, Liu X F, et al. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 2017, 44(2): 263−278. doi: 10.12029/gc20170204
|
[6] |
李建康, 刘喜方, 王登红. 中国锂矿成矿规律概要[J]. 地质学报, 2014, 88(12): 2269−2283.
Li J K, Liu X F, Wang D H. The metallogenetic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 2014, 88(12): 2269−2283.
|
[7] |
于沨, 王登红, 于扬, 等. 国内外主要沉积型锂矿分布及勘查开发现状[J]. 岩矿测试, 2019, 38(3): 354−364.
Yu F, Wang D H, Yu Y, et al. The distribution and exploration status of domestic and foreign sedimentary-type lithium deposits[J]. Rock and Mineral Analysis, 2019, 38(3): 354−364.
|
[8] |
于扬, 王登红, 于沨, 等. 川西甲基卡大型锂资源基地绿色调查及环境评价指标体系的建立[J]. 岩矿测试, 2019, 38(5): 534−544.
Yu Y, Wang D H, Yu F, et al. Study on the index system of green investigation and environmental evaluation for the Jiajika Large Lithium Mineral Resource Base, Western Sichuan, China[J]. Rock and Mineral Analysis, 2019, 38(5): 534−544.
|
[9] |
李良彬, 刘明, 彭爱平, 等. 锂云母提锂工艺及工业化应注意的问题[J]. 世界有色金属, 2014, 8(3): 37−39.
Li L B, Liu M, Peng A P, et al. Attention to the process and industrialization of lithium extraction from lemica[J]. World Nonferrous Metals, 2014, 8(3): 37−39.
|
[10] |
符招弟, 傅绕, 杨炳红. 分相浸出-火焰原子吸收光谱法测定高硫高砷金矿石及选冶物料中金的赋存状态[J]. 冶金分析, 2015, 35(11): 23−27.
Fu Z D, Fu R, Yang B H. Application of phase separation leaching-flame atomic absorption spectrometry to the determination of occurrence state of gold in high sulfur high-arsenic gold ore and smelting material[J]. Metallurgical Analysis, 2015, 35(11): 23−27.
|
[11] |
金绍祥. 化学物相分析法测定瓮福磷尾矿中钙镁磷元素形态含量[J]. 岩矿测试, 2011, 30(3): 357−360.
Jin S X. Determination of occurrence states of calcium, magnesium, phosphorus in Wengfu phosphorus tailings by chemical phase analysis[J]. Rock and Mineral Analysis, 2011, 30(3): 357−360.
|
[12] |
王坤阳, 徐金沙, 饶华文, 等. 扫描电镜-X射线能谱仪在丹巴地区铂族矿物物相特征分析中的应用[J]. 岩矿测试, 2013, 32(6): 924−930. doi: 10.3969/j.issn.0254-5357.2013.06.014
Wang K Y, Xu J S, Rao H W, et al. Application of SEM and EDS for phase characteristics analysis of platinoid mineral in the Danba area[J]. Rock and Mineral Analysis, 2013, 32(6): 924−930. doi: 10.3969/j.issn.0254-5357.2013.06.014
|
[13] |
涂家润, 卢宜冠, 孙凯, 等. 应用微束分析技术研究铜钴矿床中钴的赋存状态[J]. 岩矿测试, 2022, 41(2): 226-238.
Tu J R, Lu Y G, Sun K, et al. Application of microbeam analytical technology to study the occurrence of cobalt from copper-cobalt deposits[J]. Rock and Mineral Analysis, 2022, 41(2): 226−238.
|
[14] |
惠博, 龚大兴, 陈伟, 等. 贵州六枝地区沉积型锂矿中锂的赋存状态研究[J]. 有色金属(选矿部分), 2021, 2(1): 1−4.
Hui B, Gong D X, Chen W, et al. Study on the occurrence of lithium in sedimentary lithium deposits in Liuzhi area, Guizhou Province[J]. Nonferrous Metals (Mineral Processing Section), 2021, 2(1): 1−4.
|
[15] |
衣姝, 王金喜. 安家岭矿9号煤中锂的赋存状态和富集因素分析[J]. 煤炭与化工, 2014, 37(9): 7-10.
Yi S, Wang J X. Lithium occurrences and enrichment factor law in No. 9 coal seam of Anjialing mine[J]. Coal and Chemical Industry, 2014, 37(9): 7−10.
|
[16] |
崔燚, 温汉捷, 于文修, 等. 滇中下二叠统倒石头组富锂黏土岩系锂的赋存状态及富集机制研究[J]. 岩石学报, 2022, 37(7): 2080−2094.
Cui Y, Wen H J, Yu W X, et al. Study on the occurrence state and enrichment mechanism of lithium in lithium-rich clay rock series of the Daoshitou Formation of lower Permian in Central Yunnan[J]. Acta Petrologica Sinica, 2022, 37(7): 2080−2094.
|
[17] |
黄宝贵. 化学物相分析在物料成分全分析数据处理中的应用[J]. 岩矿测试, 2009, 28(5): 439−443. doi: 10.3969/j.issn.0254-5357.2009.05.009
Huang B G. Application of chemical phase analysis in tested data processing of complete analysis for material composition[J]. Rock and Mineral Analysis, 2009, 28(5): 439−443. doi: 10.3969/j.issn.0254-5357.2009.05.009
|
[18] |
黄宝贵, 张志勇, 杨林, 等. 中国化学物相分析研究的新成就(上)[J]. 中国无机分析化学, 2011, 1(2): 6−12.
Huang B G, Zhang Z Y, Yang L, et al. Recent achievements of chemical phase analysis in China (First Half)[J]. Chinese Journal of Inorganic Analytical chemistry, 2011, 1(2): 6−12.
|
[19] |
黄宝贵, 张志勇, 杨林, 等. 中国化学物相分析研究的新成就(下)[J]. 中国无机分析化学, 2011, 1(3): 8−15.
Huang B G, Zhang Z Y, Yang L, et al. Recent achievements of chemical phase analysis in China (Second Half)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2011, 1(3): 8−15.
|
[20] |
龚美菱, 才世福, 张敏. 某铝土矿中锂的赋存状态分析[C]//龚美菱. 化学物相分析研究论文集. 西安: 陕西科学技术出版社, 1986: 273–280.
Gong M L, Cai S F, Zhang M. Analysis of Occurrence State of Lithium in Bauxite[C]//Gong M L. Chemical Phase Analysis Research Papers. Xi’an: Shannxi Science and Technology Press, 1986: 273–280.
|
[21] |
白峰, 冯恒毅, 邹思劼, 等. 河南卢氏官坡伟晶岩中锂辉石的矿物学特征研究[J]. 岩石矿物学杂志, 2011, 30(2): 281−285.
Bai F, Feng H Y, Zou S J, et al. A mineralogical study of spodumene from Guanpo Pegmatites in Lushi, Henan Province[J]. Acta Petrologic et Mineralogica, 2011, 30(2): 281−285.
|
[22] |
Ogorodova L P, Kiseleva I A, Melchakova L V, et al. Thermodynamic properties of lithium mica: Lepidolite[J]. Geochemistry International, 2010, 435(1): 68−70.
|
[23] |
Demyanova L P, Tressaud A. Fluorination of alumino-silicate interals: The example of lepidolite[J]. Journal of Fluorine Chemistry, 2009, 130(9): 799−805.
|
[24] |
柳林, 刘磊, 张亮, 等. 采用硫酸化焙烧-水浸工艺从锂云母精矿中提取锂[J]. 湿法冶金, 2021, 40(1): 6−9.
Liu L, Liu L, Zhang L, et al. Recovery of lithium from lepidolite concentrate by sulfuric acid roating-water leaching process[J]. Hydrometallurgy of China, 2021, 40(1): 6−9.
|
[25] |
乔玲, 周本华, 姚成. 锂云母中提取锂的方法初步研究[J]. 南京工业大学学报(自然科学版), 2004, 26(5): 47−48.
Qiao L, Zhou B H, Yao C. Preliminary study on extracting lithium from lepidolite[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2004, 26(5): 47−48.
|
[26] |
赵寻, 杨静, 马鸿文, 等. 硫酸介质中锂云母分解反应动力学[J]. 中国有色金属学报, 2015, 25(9): 2588−2595.
Zhao X, Yang J, Ma H W, et al. Kinetics of lpidolite decomposition reaction in sulfuric acid solution[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(9): 2588−2595.
|
[27] |
田千秋, 陈白珍, 陈亚, 等. 锂辉石硫酸焙烧及浸出工艺研究[J]. 稀有金属, 2011, 35(1): 118−123.
Tian Q Q, Chen B Z, Chen Y, et al. Roasting and leaching behavior of spodumene in sulphuric aicd process[J]. Chinese Journal of Rare Metals, 2011, 35(1): 118−123.
|