Citation: | DONG Xuelin,XIANG Zhao,JIA Zhengxun,et al. Study and Application of a Wet Ball Milling Ultra-fine Method for Geological Samples[J]. Rock and Mineral Analysis,2023,42(5):1052−1061. DOI: 10.15898/j.ykcs.202307310110 |
At present, there are large particles in geological samples prepared in the laboratory, which affect the representativeness of the samples and the accuracy of the analysis results[
To establish a method of preparing ultra-fine geological samples by wet ball grinding with water as the grinding aid.
Weigh 20g samples into the ball mill tank made of agate material, and add 20mL water and grinding balls (8 pieces of
(1) A method for preparing ultrafine geological samples by wet ball grinding was established in laboratory. Agate tanks were used for ball milling, and there was a low risk of sample contamination. When water was used as a liquid grinding aid and the ratio of solid to liquid (
After ball milling, the large particles are significantly reduced and the particle distribution is more uniform, which better solves the problem of ultrafine preparation of relevant types of samples in the laboratory, but there are some problems such as a long sample preparation process. The ultra-fine preparation technology of geological samples, combined with XRF and LA-ICP-MS, establishes a green analysis method of solid sampling with small sample quantity, and assists in the development of the detection industry.
[1] |
王毅民, 王晓红, 高玉淑, 等. 中国地质标准物质制备技术与方法研究进展[J]. 地质通报, 2010, 29(7): 1090−1104.
Wang Y M, Wang X H, Gao Y S, et al. Advances in preparing techniques for geochemical reference materials in China[J]. Geological Bulleti of China, 2010, 29(7): 1090−1104.
|
[2] |
涂家润, 卢宜冠, 孙凯, 等. 应用微束分析技术研究铜钴矿床中钴的赋存状态[J]. 岩矿测试, 2022, 41(2): 226−238. doi: 10.15898/j.cnki.11-2131/td.202112060194
Tu J R, Lu Y G, Sun K, et al. Application of microbeam analytical technology to study the occurrence of cobalt from copper-cobalt deposits[J]. Rock and Mineral Analysis, 2022, 41(2): 226−238. doi: 10.15898/j.cnki.11-2131/td.202112060194
|
[3] |
闫斌, 朱祥坤, 陈岳龙. 样品量的大小对铜锌同位素测定值的影响[J]. 岩矿测试, 2011, 30(4): 400−405. doi: 10.3969/j.issn.0254-5357.2011.04.004
Yan B, Zhu X K, Chen Y L. Effects of sample size on Cu and Zn isotope ratio measurements[J]. Rock and Mineral Analysis, 2011, 30(4): 400−405. doi: 10.3969/j.issn.0254-5357.2011.04.004
|
[4] |
王祎亚, 王毅民. 超细标准物质与超细样品分析研究进展[J]. 光谱学与光谱分析, 2021, 41(3): 696−703.
Wang Y Y, Wang Y M. Research progress of ultra-fine reference materials and ultra-fine samples[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 696−703.
|
[5] |
程志中, 刘妹, 黄宏库, 等. 镍矿石和镍精矿标准物质研制[J]. 岩矿测试, 2013, 32(4): 86-93. doi: 10.3969/j.issn.0254-5357.2013.04.009
Cheng Z Z, Liu M, Huang H K, et al. Preparation and certification of nickel ore and nickel concentrate reference materials[J]. Rock and Mineral Analysis, 2013, 32(4): 600−607. doi: 10.3969/j.issn.0254-5357.2013.04.009
|
[6] |
王晓红, 何红蓼, 王毅民, 等. 超细样品的地质分析应用[J]. 分析测试学报, 2010, 29(6): 578−583.
Wang X H, He H L, Wang Y M, et al. Geoanalytical techniques using ultra-fine samples[J]. Journal of Instrumental Analysis, 2010, 29(6): 578−583.
|
[7] |
刘青山, 靳宏, 臧世阳, 等. 粒度不均匀铬矿石取样代表性的研究[J]. 岩矿测试, 2012, 31(6): 997−999. doi: 10.15898/j.cnki.11-2131/td.2012.06.015
Liu Q S, Jin H, Zang S Y, et al. A study on the representativeness of sampling for non-uniform particle size chrome ore[J]. Rock and Mineral Analysis, 2012, 31(6): 997−999. doi: 10.15898/j.cnki.11-2131/td.2012.06.015
|
[8] |
Flores É M M, Barin J S, Mesko M F, et al. Sample preparation techniques based on combustion reactions in closed vessels—A brief overview and recent applications[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2007, 62: 1051−1064. doi: 10.1016/j.sab.2007.04.018
|
[9] |
熊英, 陈文科, 田萍, 等. 含粗粒金矿样品采集加工与分析研究进展[J]. 岩矿测试, 2015, 34(1): 12−18. doi: 10.15898/j.cnki.11-2131/td.2015.01.004
Xiong Y , Chen W K , Tian P, et al. Review on collection, processing and analysis of coarse gold-containing ore samples[J]. Rock and Mineral Analysis, 2015, 34(1): 12-18. doi: 10.15898/j.cnki.11-2131/td.2015.01.004
|
[10] |
Agatemor C, Beauchemin D. Matrix effects in inductively coupled plasma mass spectrometry: A review[J]. Analytica Chimica Acta, 2011, 706(1): 66−83. doi: 10.1016/j.aca.2011.08.027
|
[11] |
Linge K L. Trace element determination by ICP-AES and ICP-MS developments and applications reported during 2006 and 2007[J]. Geostandards and Geoanalytical Research, 2008, 32: 16.
|
[12] |
Guerrero M M L, Alonso E V, García de Torres A, et al. Simultaneous determination of traces of Pt, Pd, Os, Ir, Rh, Ag and Au metals by magnetic SPE-ICP-OES and in situ chemical vapour generation[J]. Journal of Analytical Atomic Spectrometry, 2017, 32: 2281−2291. doi: 10.1039/C7JA00271H
|
[13] |
Sébastien A, Michel V, Mireille P, et al. A routine method for oxide and hydroxide interference corrections in ICP-MS chemical analysis of environmental and geological samples[J]. Geostandards and Geoanalytical Research, 2007, 24: 19−31.
|
[14] |
Eggins S M, Woodhead J D, Kinsley L P J, et al. A simple method for the precise determination of ≥40 trace elements in geological samples by ICP-MS using enriched isotope internal standardisation[J]. Chemical Geology, 1997, 134: 311−326. doi: 10.1016/S0009-2541(96)00100-3
|
[15] |
王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68−76.
Wang N, Xu T M, Wei S, et al. Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 68−76.
|
[16] |
郑存江, 刘清辉, 胡勇平, 等. 富钴结壳超细标准物质的加工制备[J]. 岩矿测试, 2010, 29(3): 301−304.
Zheng C J, Liu Q H, Hu Y P, et al. Processing and preparation of ultra-fine Co-rich crust reference materials[J]. Rock and Mineral Analysis, 2010, 29(3): 301−304.
|
[17] |
赵晓亮, 李志伟, 王烨, 等. 铌钽精矿标准物质研制[J]. 岩矿测试, 2018, 37(6): 687−694. doi: 10.15898/j.cnki.11-2131/td.201711230185
Zhao X L, Li Z W, Wang Y, et al. Preparation and certification of niobium-tantalum concentrate reference materials[J]. Rock and Mineral Analysis, 2018, 37(6): 687−694. doi: 10.15898/j.cnki.11-2131/td.201711230185
|
[18] |
Balcerzak M. Sample digestion methods for the determination of traces of precious metals by spectrometric techniques[J]. Analytical Sciences, 2002, 18: 737−750. doi: 10.2116/analsci.18.737
|
[19] |
孙德忠, 何红蓼. 封闭酸溶-等离子体质谱法分析超细粒度地质样品中42个元素[J]. 岩矿测试, 2007, 26(1): 21−25. doi: 10.3969/j.issn.0254-5357.2007.01.006
Sun D Z, He H L. Determination of 42 elements in ultra-fine geological samples by inductively coupled plasma-mass spectrometry with pressurized acid digestion[J]. Rock and Mineral Analysis, 2007, 26(1): 21−25. doi: 10.3969/j.issn.0254-5357.2007.01.006
|
[20] |
王毅民, 陈幼平. 近30年来我国地质分析重要成果评介[J]. 地质论评, 2008, 54(5): 653−669. doi: 10.3321/j.issn:0371-5736.2008.05.010
Wang Y M, Chen Y P. Review on important achievements of geoanalysis in last 30 years of Cnina[J]. Geological Review, 2008, 54(5): 653−669. doi: 10.3321/j.issn:0371-5736.2008.05.010
|
[21] |
杜高翔, 王海荣, 柴红勇, 等. 粉体制备中助磨剂的应用研究现状[J]. 化工矿物与加工, 2004(10): 6−9. doi: 10.3969/j.issn.1008-7524.2004.10.002
Du G X, Wang H R, Chai H Y, et al. Study status of application of grinding aids in the preparation of powders[J]. Industrial Minerals & Processing, 2004(10): 6−9. doi: 10.3969/j.issn.1008-7524.2004.10.002
|
[22] |
高伟, 王泽红, 毛勇. 助磨剂在石英粉磨中的应用研究现状及发展趋势[J]. 金属矿山, 2019, 48(9): 22−27. doi: 10.19614/j.cnki.jsks.201909004
Gao W, Wang Z H, Mao Y. Research status and development trend of grinding aid in quartz grinding[J]. Metal Mine, 2019, 48(9): 22−27. doi: 10.19614/j.cnki.jsks.201909004
|
[23] |
He M, Forssberg E. Rheological behaviors in wet ultrafine grinding of limestone[J]. Minerals and Metallurgical Processing, 2007, 24: 19−29.
|
[24] |
Hasegawa M, Kimata M, Shimane M, et al. The effect of liquid additives on dry ultrafine grinding of quartz[J]. Powder Technology, 2001, 114: 145−151. doi: 10.1016/S0032-5910(00)00290-4
|
[25] |
Wang X, Li G, Zhang Q, et al. Determination of major/ minor and trace elements in seamount phosphorite by XRF spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28: 81−88. doi: 10.1111/j.1751-908X.2004.tb01044.x
|
[26] |
Wang Y, Gao Y, Wang X, et al. Investigations into the preparation of ultra-fine particle size geochemical reference materials[J]. Geostandards and Geoanalytical Research, 2007, 28: 113−121.
|
[27] |
王焰, 钟宏, 曹勇华, 等. 我国铂族元素, 钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33): 3825−3838. doi: 10.1360/TB-2020-0202
Wang Y, Zhong H, Cao Y H, et al. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin, 2020, 65(33): 3825−3838. doi: 10.1360/TB-2020-0202
|
[28] |
周成胶, 张刚阳, 张丁川. 铼金属矿床类型, 元素赋存形式和富集机制[J]. 地质科技情报, 2021, 40(4): 115−130.
Zhou C J, Zhang G Y, Zhang D C. Types, element occurrence forms and enrichment mechanisms of rhemium metal deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 115−130.
|