• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
XIAO Yufang,JI Yiping,REN Xiaorong,et al. Determination of Rhenium in Tungsten and Molybdenum Ore by ICP-MS with Lefort Aqua Regia Microwave Digestion and 8-hydroxyquinoline Precipitation[J]. Rock and Mineral Analysis,2023,42(5):915−922. DOI: 10.15898/j.ykcs.202307310108
Citation: XIAO Yufang,JI Yiping,REN Xiaorong,et al. Determination of Rhenium in Tungsten and Molybdenum Ore by ICP-MS with Lefort Aqua Regia Microwave Digestion and 8-hydroxyquinoline Precipitation[J]. Rock and Mineral Analysis,2023,42(5):915−922. DOI: 10.15898/j.ykcs.202307310108

Determination of Rhenium in Tungsten and Molybdenum Ore by ICP-MS with Lefort Aqua Regia Microwave Digestion and 8-hydroxyquinoline Precipitation

More Information
  • Received Date: July 30, 2023
  • Revised Date: August 20, 2023
  • Accepted Date: September 07, 2023
  • Available Online: November 18, 2023
  • BACKGROUND

    Rhenium (Re) is a key mineral resource widely used in the aerospace field. As one of the rarest elements in the earth, Re rarely exists as an independent mineral but is dispersed in various sulfide ores. Due to its low content and dispersed distribution, the highly sensitive and accurate quantification of Re (ng/g) in complex ore is one of the challenges of modern geological analysis. In order to solve the problem of incomplete decomposition and the great interference caused by co-dissolution of high abundance matrix elements, the existing “digestion-separation” method using 8-12h for one sample is complicated, time-consuming and labor-intensive. Therefore, the development of a simple, fast and low-cost method is urgently required.

    OBJECTIVES

    To establish an analytical method based on Lefort aqua regia microwave digestion, molybdenum and tungsten precipitation, ICP-mass spectrometry for the determination of rhenium in ore.

    METHODS

    Lefort aqua regia microwave digestion was used to fully decompose ore, and then the organic precipitator 8-hydroxyquinoline (8-HQ) was used to selectively precipitate high-abundance matrix interference elements molybdenum (Mo) and tungsten (W) in the acid-ammonium acetate buffer system (pH 4.5). The organic precipitator 8-HQ was used to precipitate Mo and W to produce stable hydroxyquinoline molybdenum [MoO2(C9H6ON)2] and tungsten [WO2(C9H6ON)2], thereby removing the high-abundance Mo and W in the digestion solution and reducing the interference of matrix on the quantitative analysis of Re. The relevant parameters of Lefort aqua regia microwave digestion and 8-HQ precipitation were systematically studied, and the digestion and precipitation properties were deeply studied by using national certified reference materials.

    RESULTS

    The key parameters that influence ore digestion including volume of Lefort aqua regia and temperature of microwave digestion, were determined as 2.8mL and 130℃ for step 1 and 150℃ for step 2 separately. The addition amount of 8-HQ was also determined as 0.2mL (3%, w%) by comparing precipitation rates of W, Mo and W-Mo solution (25g/mL) under different amounts, and results showed that the precipitation rate was greater than 95% in different ore digestion solutions. In the established method, the detection limit of Re was 6.9ng/g, the relative error was 0.71%-6.07%, and the RSD was less than 5%.

    CONCLUTIONS

    The method established in this study can effectively eliminate the interference of matrix elements molybdenum and tungsten on Re quantification without introducing new interference elements. Compared with the existing “digestion-separation” process, the method is simpler and faster (shortened from 8-12h for one sample to approximately 1h) and the method has been successfully applied in molybdenum ore, rhenium molybdenum ore and tungsten-tin bismuth ore. This study proves that interfering instead of target element precipitation is feasible and provides a simple, fast and low-cost method for accurate quantification of Re in complex ore.

  • [1]
    郭娟, 崔荣国, 王卉, 等. 世界铼资源供需现状及展望[J]. 国土资源情报, 2020(10): 67−74.

    Guo J, Cui R G, Wang H, et al. Supply and demand situation and outlook of global rhenium resources[J]. Natural Resources Information, 2020(10): 67−74.
    [2]
    陈喜峰, 陈秀法, 李娜, 等. 全球铼矿资源分布特征与开发利用形势及启示[J]. 中国矿业, 2019, 28(5): 7−12. doi: 10.12075/j.issn.1004-4051.2019.05.031

    Chen X F, Chen X F, Li N, et al. Distribution characteristics and development & utilization status of global rhenium resources and enlightenments[J]. China Mining Magazine, 2019, 28(5): 7−12. doi: 10.12075/j.issn.1004-4051.2019.05.031
    [3]
    Karadjov M, Velitchkova N, Veleva O, et al. Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2016, 119: 76−82. doi: 10.1016/j.sab.2016.03.011
    [4]
    赵庆令, 李清彩. 电感耦合等离子体发射光谱法测定钼矿石和铜矿石中的铼[J]. 岩矿测试, 2009, 28(6): 593−594. doi: 10.15898/j.cnki.11-2131/td.2009.06.008

    Zhao Q L, Li Q C. Determination of rhenium in molybdenum and copper ores by inductively coupled plasma atomic emission specrometry[J]. Rock and Mineral Analysis, 2009, 28(6): 593−594. doi: 10.15898/j.cnki.11-2131/td.2009.06.008
    [5]
    王景凤. 基体分离-电感耦合等离子体原子发射光谱法测定辉钼精矿中痕量铼[J]. 冶金分析, 2023, 43(1): 62−67. doi: 10.13228/j.boyuan.issn1000-7571.011848

    Wang J F. Determination of trace rhenium in molybdenite concentrate by matrix separation-inductively coupled plasma emission spectrometry[J]. Metallurgical Analysis, 2023, 43(1): 62−67. doi: 10.13228/j.boyuan.issn1000-7571.011848
    [6]
    贾雷, 左修源. 四酸密闭消解-电感耦合等离子体质谱(ICP-MS)法测定铀矿中的铼和钪[J]. 中国无机分析化学, 2023, 13(5): 469−474.

    Jia L, Zuo X Y. Determination of rhenium and scandiumin uranium ores by inductively coupled plasma mass spectrometry (ICP-MS) with tetraacid confinement ablation[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(5): 469−474.
    [7]
    Zhen Y, Chen H, Zhang M, et al. Cadmium and cobalt ions enhanced-photochemical vapor generation for determination of trace rhenium by ICP-MS[J]. Applied Spectroscopy Reviews, 2022, 57(4): 318−337. doi: 10.1080/05704928.2021.1878368
    [8]
    Bettinardi D J, Brown M A, Paulenova A, et al. Separation and determination of ultratrace rhenium quantities in molybdenum matrix[J]. Separation Science and Technology, 2021, 56(16): 2789−2800. doi: 10.1080/01496395.2020.1849304
    [9]
    李明, 蔡玉曼, 张培新. 电感耦合等离子体质谱(ICP-MS)法测定钨矿石、钼矿石中的铼[J]. 中国无机分析化学, 2019, 9(6): 29−34. doi: 10.3969/j.issn.2095-1035.2019.06.007

    Li M, Cai Y M, Zhang P X. Determination of Re in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(6): 29−34. doi: 10.3969/j.issn.2095-1035.2019.06.007
    [10]
    申玉民, 边朋沙, 李晓敬, 等. 电感耦合等离子体质谱法测定地质样品中痕量铼[J]. 冶金分析, 2018, 38(12): 7−12.

    Shen Y M, Bian P S, Li X J, et al. Determination of trace rhenium in geological sample by inductively coupled plasma mass spectrometry[J]. Metallugical Analysis, 2018, 38(12): 7−12.
    [11]
    王妍力, 罗明标, 柯麟, 等. 氧化镁烧结-电感耦合等离子体质谱法测定砂岩型铀矿中的痕量铼[J]. 岩矿测试, 2016, 35(4): 373−377.

    Wang Y L, Luo M B, Ke L, et al. Determination of trace rhenium in sandstone-type uranium deposits by inductively coupled plasma-mass spectrometry with magnesium oxide sintering[J]. Rock and Mineral Analysis, 2016, 35(4): 373−377.
    [12]
    张艳, 郝辉, 雒虹. 电感耦合等离子体质谱(ICP-MS)法测定矿石中的铼——三种前处理方法比较[J]. 中国无机分析化学, 2016, 6(1): 34−37. doi: 10.3969/j.issn.2095-1035.2016.01.009

    Zhang Y, Hao H, Luo H. Comparison of three sample pretreatment methods in determination of rhenium in ores by ICP-MS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1): 34−37. doi: 10.3969/j.issn.2095-1035.2016.01.009
    [13]
    熊英, 吴峥, 董亚妮, 等. 封闭消解-阳离子交换分离-电感耦合等离子体质谱法测定铜铅锌矿石中的铼[J]. 岩矿测试, 2015, 34(6): 623−628. doi: 10.15898/j.cnki.11-2131/td.2015.06.004

    Xiong Y, Wu Z, Dong Y N, et al. Determination of rhenium in copper-lead-zinc ore by inductively coupled plasma-mass spectrometry with closed decomposition and cation exchange separation[J]. Rock and Mineral Analysis, 2015, 34(6): 623−628. doi: 10.15898/j.cnki.11-2131/td.2015.06.004
    [14]
    任志海, 夏照明, 李树强. 电感耦合等离子体质谱法(ICP-MS)测定钼矿石中的铼[J]. 中国无机分析化学, 2013, 3(3): 27−29.

    Ren Z H, Xia Z M, Li S Q. Determination of rhenium in molybdenum ores by inductively coupled plasma mass spectrometry (ICP-MS)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(3): 27−29.
    [15]
    屈文俊, 杜安道. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄[J]. 岩矿测试, 2003, 22(4): 254−257.

    Qu W J, Du A D. Highly precise Re-Os dating of molybdenite by ICP-MS with Carius tube sample digestion[J]. Rock and Mineral Analysis, 2003, 22(4): 254−257.
    [16]
    李丽君, 薛静. 微波消解-电感耦合等离子体质谱法测定高岭土中10种微量元素[J]. 岩矿测试, 2022, 41(1): 22−31.

    Li L J, Xue J. Determination of 10 trace elements in kaolin by ICP-MS with microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(1): 22−31.
    [17]
    王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68−76.

    Wang N, Xu T M, Wei S, et al. Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 68−76.
    [18]
    张莉娟, 方蓬达, 王力强, 等. 微波消解-电感耦合等离子体发射光谱法测定砂岩型铀矿中的铀钍[J]. 岩矿测试, 2022, 41(5): 798−805.

    Zhang L J, Fang P D, Wang L Q, et al. Determination of uraniumand thorium in sandstone uranium deposits by inductively coupled plasma-optical emission spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(5): 798−805.
    [19]
    郑智慷, 曾江萍, 王家松, 等. 常压密闭微波消解-电感耦合等离子体发射光谱法测定锑矿石中的锑[J]. 岩矿测试, 2020, 39(2): 208−215.

    Zheng Z K, Zeng J P, Wang J S, et al. Determination of antimony in antimony ores by inductively coupled plasma-optical emission spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(2): 208−215.
    [20]
    黄靖, 王英滨, 周冠轩, 等. 微波消解-电感耦合等离子体发射光谱法测定粉煤灰中的镓[J]. 岩矿测试, 2020, 39(1): 92−98.

    Huang J, Wang Y B, Zhou G X, et al. Determination of gallium in coal fly ash by inductively coupled plasma-optical emission spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 92−98.
    [21]
    邱朝辉, 钟宏, 曹占芳, 等. 铼的分离分析方法研究进展[J]. 稀有金属与硬质合金, 2010, 38(1): 56−59.

    Qiu Z H, Zhong H, Cao Z F, et al. The latest development of rhenium separation and analysis methods[J]. Rare Metals and Cemented Carbides, 2010, 38(1): 56−59.
    [22]
    Chen S, Wang X, Niu Y, et al. Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS[J]. Science Bulletin, 2017, 62(4): 277−289. doi: 10.1016/j.scib.2017.01.004
    [23]
    李晓云, 王羽, 金婵, 等. 微波消解-高分辨电感耦合等离子体质谱法测定土壤中8种金属元素[J]. 岩矿测试, 2022, 41(3): 374−383.

    Li X Y, Wang Y, Jin C, et al. Determination of 8 metal elements in soil by high-resolution inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(3): 374−383.
  • Cited by

    Periodical cited type(3)

    1. 于洋,吴磊,王娜,吴良英. 电感耦合等离子体质谱法测定岩石样品中15种稀土元素含量不确定度的评估. 华北地质. 2024(02): 105-110 .
    2. 陈亮,张聪,严璐佳,金鸣,陈在敏. 微波消解-电感耦合等离子体质谱法测定巴戟天中16种稀土元素. 化学分析计量. 2024(07): 12-17 .
    3. 于阗,吕晓惠,陈亚南,于晓林,彭庆哲. 电感耦合等离子发射光谱法同时测定土壤中水溶性阳离子与硫酸根. 山西化工. 2023(11): 49-50+67 .

    Other cited types(0)

Catalog

    Article views (148) PDF downloads (36) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return