Citation: | GUO Xinwei,LI Kun,HAO Zhihong,et al. Determination of High Content of Molybdenum in Molybdenum Ore by Emission Spectrometry with Solid Sampling Technique[J]. Rock and Mineral Analysis,2023,42(5):1031−1040. DOI: 10.15898/j.ykcs.202307310102 |
The majority of current molybdenum ore analysis techniques use absorbance, gravimetric methods, ICP-MS, ICP-OES, XRF, etc., which are primarily based on liquid injection, with a lengthy analytical procedure, complex steps, and a measurable range of 0.01%-5.17%
To improve the current analytical techniques for determining high content of molybdenum in molybdenum ore.
The mixed sample was loaded into the lower electrode after being ground at 2400Hz for 30min with the different sample-to-buffer ratio in a 5mL crucible. Two drops of a 2% mass fraction sucrose-ethanol solution were added and dried at 70℃ for 1h. The samples were mounted on an AES-8000 direct-reading atomic emission spectrometer using the vertical electrode method. The internal reference method was used to fit the quadratic curve in logarithmic coordinates by subtracting the background spectral lines of the analyzed elements and the internal reference elements. The experiments were conducted by choosing the internal reference element types and spectral lines, selecting the Mo spectral lines, deciding the sample-to-buffer ratio, optimizing the current loading procedure, setting the spectral uptake time, and other conditions. A set of national-level reference materials and national-level synthetic silicate spectral analysis reference materials were used for calibration. The relative standard deviation and logarithmic deviation were utilized for quality control.
(1) The analytical line pair is chosen to be Mo 277.54nm/Ge 326.9494nm. The uniformity of internal reference elements is ensured by the excessive addition of germanium dioxide. Mo 277.54nm and Ge 326.9494nm evaporation curves exhibit good consistency when GBW07142 is used as the sample (
This method can be employed to determine the high Mo content in molybdenum ore and molybdenum powder without dilution. Moreover, it is suitable for a wider determination range with the upper limit rising to 50%. It can solve possible problems, such as large sample demand, large chemical reagent use, cumbersome operation and contamination in other analytical methods.