Citation: | TAO Peng,XIE Shiwen,LONG Tao,et al. Atom Probe Tomography (APT) and Its Application in Ore Deposits[J]. Rock and Mineral Analysis,2023,42(5):957−969. DOI: 10.15898/j.ykcs.202307300100 |
Atom Probe Tomography (APT) is a test analysis technique that provides quantitative three-dimensional element and isotope analysis at subnanometer resolution, with extremely high spatial resolution and low detection limits[
[1] |
李文昌, 李建威, 谢桂青, 等. 中国关键矿产现状, 研究内容与资源战略分析[J]. 地学前缘, 2022, 29(1): 1−13.
Li W C, Li J W, Xie G Q, et al. Critical minerals in China: Current status, research focus and resource strategic analysis[J]. Earth Science Frontiers, 2022, 29(1): 1−13.
|
[2] |
蒋少涌, 赵葵东, 姜海, 等. 中国钨锡矿床时空分布规律, 地质特征与成矿机制研究进展[J]. 科学通报, 2020, 65(33): 3730−3745.
Jiang S Y, Zhao K D, Jiang H, et al. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: An overview[J]. Chinese Science Bulletin, 2020, 65(33): 3730−3745.
|
[3] |
涂家润, 卢宜冠, 孙凯, 等. 应用微束分析技术研究铜钴矿床中钴的赋存状态[J]. 岩矿测试, 2022, 41(2): 226−238. doi: 10.15898/j.cnki.11-2131/td.202112060194
Tu J R, Lu Y G, Sun K, et al. Application of microbeam analytical technology to study the occurrence of cobalt from copper-cobalt deposits[J]. Rock and Mineral Analysis, 2022, 41(2): 226−238. doi: 10.15898/j.cnki.11-2131/td.202112060194
|
[4] |
侯增谦, 陈骏, 翟明国. 战略性关键矿产研究现状与科学前沿[J]. 科学通报, 2020, 65(33): 3651−3652. doi: 10.1360/TB-2020-1417
Hou Z Q, Chen J, Zhai M G. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin, 2020, 65(33): 3651−3652. doi: 10.1360/TB-2020-1417
|
[5] |
翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106−111.
Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources: Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2): 106−111.
|
[6] |
London D. Rare-element granitic pegmatites[J]. Reviews in Economic Geology, 2016, 18: 165−194.
|
[7] |
涂光炽, 高振敏, 胡瑞忠, 等. 分散元素地球化学及成矿机制[M]. 北京: 地质出版社, 2004: 1-424.
Tu G Z, Gao Z M, Hu R Z, et al. The Geochemistry and Ore-forming Mechanism of the Dispersed Elements[M]. Beijing: Geological Publishing House, 2004: 1-424.
|
[8] |
李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669. doi: 10.15898/j.cnki.11-2131/td.201907310115
Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669. doi: 10.15898/j.cnki.11-2131/td.201907310115
|
[9] |
Chen L L, Chen Y, Feng X X, et al. Uranium occurrence state in the Tarangaole area of the Ordos Basin, China: Implications for enrichment and mineralization[J]. Ore Geology Reviews, 2019, 115: 103034. doi: 10.1016/j.oregeorev.2019.103034
|
[10] |
员媛娇, 范成龙, 吕喜平, 等. 电子探针和 LA-ICP-MS 技术研究内蒙古浩尧尔忽洞金矿床毒砂矿物学特征[J]. 岩矿测试, 2022, 41(2): 211−225.
Yun Y J, Fan C L, Lyu X P, et al. Application of EPMA and LA-ICP-MS to study mineralogy of arsenopyrite from the Haoyaoerhudong gold deposit, Inner Mongolia, China[J]. Rock and Mineral Analysis, 2022, 41(2): 211−225.
|
[11] |
Deol S, Deb M, Large R R, et al. LA-ICPMS and EPMA studies of pyrite, arsenopyrite and loellingite from the Bhukia—Jagpura gold prospect, Southern Rajasthan, India: Implications for ore genesis and gold remobilization[J]. Chemical Geology, 2012, 326: 72−87.
|
[12] |
汪超, 王瑞廷, 刘云华, 等. 陕西商南三官庙金矿床地质特征, 金的赋存状态及矿床成因探讨[J]. 矿床地质, 2021, 40(3): 491−508.
Wang C, Wang R T, Liu Y H, et al. Geological characteristics, modes of occurrence of gold and genesis of San’guanmiao gold deposit, Shangnan, Shaanxi Province[J]. Mineral Deposits, 2021, 40(3): 491−508.
|
[13] |
Reddy S M, Saxey D W, Rickard W D A, et al. Atom probe tomography: Development and application to the geosciences[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 5−50. doi: 10.1111/ggr.12313
|
[14] |
Fougerouse D, Kirkland C L, Saxey D W, et al. Nanoscale isotopic dating of monazite[J]. Geostandards and Geoanalytical Research, 2020, 44(4): 637−652. doi: 10.1111/ggr.12340
|
[15] |
Perea D E, Lensch J L, May S J, et al. Composition analysis of single semiconductor nanowires using pulsed-laser atom probe tomography[J]. Applied Physics A, 2006, 85: 271−275. doi: 10.1007/s00339-006-3710-1
|
[16] |
Larson D J, Alvis R L, Lawrence D F, et al. Analysis of bulk dielectrics with atom probe tomography[J]. Microscopy and Microanalysis, 2008, 14(S2): 1254−1255. doi: 10.1017/S1431927608083657
|
[17] |
Bachhav M, Danoix R, Danoix F, et al. Investigation of wüstite (Fe1- x O) by femtosecond laser assisted atom probe tomography[J]. Ultramicroscopy, 2011, 111(6): 584−588. doi: 10.1016/j.ultramic.2010.11.023
|
[18] |
Pérez-Huerta A, Laiginhas F, Reinhard D A, et al. Atom probe tomography (APT) of carbonate minerals[J]. Micron, 2016, 80: 83−89. doi: 10.1016/j.micron.2015.10.001
|
[19] |
Larson D J, Prosa T J, Perea D E, et al. Atom probe tomography of nanoscale electronic materials[J]. Mrs Bulletin, 2016, 41: 30−34. doi: 10.1557/mrs.2015.308
|
[20] |
Ulfig R M, Larson D J, Kelly T F, et al. Performance advances in LEAP systems[J]. Microscopy and Microanalysis, 2014, 20(S3): 1120−1121. doi: 10.1017/S1431927614007338
|
[21] |
Gopon P, Douglas J O, Auger M A, et al. A nanoscale investigation of Carlin-type gold deposits: An atom-scale elemental and isotopic perspective[J]. Economic Geology, 2019, 114(6): 1123−1133. doi: 10.5382/econgeo.4676
|
[22] |
Fougerouse D, Reddy S M, Saxey D W, et al. Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: Evidence from atom probe microscopy[J]. American Mineralogist, 2016, 101(8): 1916−1919. doi: 10.2138/am-2016-5781CCBYNCND
|
[23] |
Fougerouse D, Cugerone A, Reddy S M, et al. Nanoscale distribution of Ge in Cu-rich sphalerite[J]. Geochimica et Cosmochimica Acta, 2023, 346: 223−230. doi: 10.1016/j.gca.2023.02.011
|
[24] |
Fougerouse D, Reddy S M, Aylmore M, et al. A new kind of invisible gold in pyrite hosted in deformation-related dislocations[J]. Geology, 2021, 49(10): 1225−1229. doi: 10.1130/G49028.1
|
[25] |
Dubosq R, Rogowitz A, Schweinar K, et al. A 2D and 3D nanostructural study of naturally deformed pyrite: Assessing the links between trace element mobility and defect structures[J]. Contributions to Mineralogy and Petrology, 2019, 174(9): 72. doi: 10.1007/s00410-019-1611-5
|
[26] |
Börner F, Keith M, Fougerouse D, et al. Between defects and inclusions: The fate of tellurium in pyrite[J]. Chemical Geology, 2023: 121633.
|
[27] |
Dubosq R, Rogowitz A, Schneider D A, et al. Fluid inclusion induced hardening: Nanoscale evidence from naturally deformed pyrite[J]. Contributions to Mineralogy and Petrology, 2021, 176(2): 15. doi: 10.1007/s00410-021-01774-9
|
[28] |
Dubosq R, Gault B, Hatzoglou C, et al. Analysis of nanoscale fluid inclusions in geomaterials by atom probe tomography: Experiments and numerical simulations[J]. Ultramicroscopy, 2020, 218: 113092. doi: 10.1016/j.ultramic.2020.113092
|
[29] |
Gopon P, Douglas J O, Meisenkothen F, et al. Atom probe tomography for isotopic analysis: Development of the 34S/32S system in sulfides[J]. Microscopy and Microanalysis, 2022, 28(4): 1127−1140. doi: 10.1017/S1431927621013568
|
[30] |
Lewis J B, Isheim D, Floss C, et al. 12C/13C-ratio determination in nanodiamonds by atom-probe tomography[J]. Ultramicroscopy, 2015, 159: 248−254. doi: 10.1016/j.ultramic.2015.05.021
|
[31] |
Darling J R, White L F, Kizovski T, et al. The shocking state of apatite and merrillite in shergottite Northwest Africa 5298 and extreme nanoscale chlorine isotope variability revealed by atom probe tomography[J]. Geochimica et Cosmochimica Acta, 2021, 293: 422−437. doi: 10.1016/j.gca.2020.11.007
|
[32] |
王碧雯, 李秋立. 原子探针工作原理及其在地球科学中的应用[J]. 矿物岩石地球化学通报, 2020, 39(6): 1108−1118. doi: 10.19658/j.issn.1007-2802.2020.39.101
Wang B W, Li Q L. An introduction to principle of atom probe and its applications in Earth sciences[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(6): 1108−1118. doi: 10.19658/j.issn.1007-2802.2020.39.101
|
[33] |
Gault B, Chiaramonti A, Cojocaru-Mirédin O, et al. Atom probe tomography[J]. Nature Reviews Methods Primers, 2021, 1(1): 51. doi: 10.1038/s43586-021-00047-w
|
[34] |
Saxey D W, Moser D E, Piazolo S, et al. Atomic worlds: Current state and future of atom probe tomography in geoscience[J]. Scripta Materialia, 2018, 148: 115−121. doi: 10.1016/j.scriptamat.2017.11.014
|
[35] |
Wu Y F, Fougerouse D, Evans K, et al. Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics[J]. Geology, 2019, 47(7): 641−644. doi: 10.1130/G46114.1
|
[36] |
Miller M K, Russell K F, Thompson K, et al. Review of atom probe FIB-based specimen preparation methods[J]. Microscopy and Microanalysis, 2007, 13(6): 428−436. doi: 10.1017/S1431927607070845
|
[37] |
Hough R M, Noble R R P, Reich M. Natural gold nanoparticles[J]. Ore Geology Reviews, 2011, 42(1): 55−61. doi: 10.1016/j.oregeorev.2011.07.003
|
[38] |
McLeish D F, Williams-Jones A E, Vasyukova O V, et al. Colloidal transport and flocculation are the cause of the hyperenrichment of gold in nature[J]. Proceedings of the National Academy of Sciences, 2021, 118(20): e2100689118. doi: 10.1073/pnas.2100689118
|
[39] |
Petrella L, Thébaud N, Fougerouse D, et al. Nanoparticle suspensions from carbon-rich fluid make high-grade gold deposits[J]. Nature Communications, 2022, 13(1): 3795. doi: 10.1038/s41467-022-31447-5
|
[40] |
Cabri L J, Chryssoulis S L, de Villiers J P R, et al. The nature of “invisible” gold in arsenopyrite[J]. The Canadian Mineralogist, 1989, 27(3): 353−362.
|
[41] |
Palenik C S, Utsunomiya S, Reich M, et al. “Invisible” gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit[J]. American Mineralogist, 2004, 89(10): 1359−1366. doi: 10.2138/am-2004-1002
|
[42] |
Cook N J, Ciobanu C L, Pring A, et al. Trace and minor elements in sphalerite: A LA-ICPMS study[J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761−4791. doi: 10.1016/j.gca.2009.05.045
|
[43] |
Johan Z. Indium and germanium in the structure of sphalerite: An example of coupled substitution with copper[J]. Mineralogy and Petrology, 1988, 39: 211−229. doi: 10.1007/BF01163036
|
[44] |
韩英, 王京彬, 祝新友, 等. 广东凡口铅锌矿床流体包裹体特征及地质意义[J]. 矿物岩石地球化学通报, 2013(1): 81−86.
Han Y, Wang J B, Zhu X Y, et al. The characteristics and its geological significance of the fluid inclusion in the Fankou lead-zinc deposit, Guangdong[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013(1): 81−86.
|
[45] |
倪培, 范宏瑞, 丁俊英. 流体包裹体研究进展[J]. 矿物岩石地球化学通报, 2014, 33(1): 1−5. doi: 10.19658/j.issn.1007-2802.2021.40.056
Ni P, Fan H R, Ding J Y. Progress in fluid inclusions[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1): 1−5. doi: 10.19658/j.issn.1007-2802.2021.40.056
|
[46] |
李晓东, 张艳, 韩润生, 等. 流体包裹体研究进展及其在矿床学中的应用[J]. 地质论评, 2022, 68(6): 14. doi: 10.16509/j.georeview.2022.07.065
Li X D, Zhang Y, Han R S, et al. Research progress of fluid inclusions and its application in ore deposit[J]. Geological Review, 2022, 68(6): 14. doi: 10.16509/j.georeview.2022.07.065
|
[47] |
Taylor S D, Gregory D D, Perea D E, et al. Pushing the limits: Resolving paleoseawater signatures in nanoscale fluid inclusions by atom probe tomography[J]. Earth and Planetary Science Letters, 2022, 599: 117859. doi: 10.1016/j.jpgl.2022.117859
|
1. |
谢士稳,刘福来,王慧宁,王舫,龙涛. 富钴黄铁矿中钴微-纳米尺度赋存状态:以大横路铜钴矿为例. 岩石学报. 2024(10): 3028-3036 .
![]() |