• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
ZHANG Yafeng,SHI Zeming,MIAO Guowen,et al. Genetic Types and Ecological Potential of Selenium-Enriched Land in the Northern Margin of the Tibetan Plateau[J]. Rock and Mineral Analysis,2025,x(x):1−11. DOI: 10.15898/j.ykcs.202307030087
Citation: ZHANG Yafeng,SHI Zeming,MIAO Guowen,et al. Genetic Types and Ecological Potential of Selenium-Enriched Land in the Northern Margin of the Tibetan Plateau[J]. Rock and Mineral Analysis,2025,x(x):1−11. DOI: 10.15898/j.ykcs.202307030087

Genetic Types and Ecological Potential of Selenium-Enriched Land in the Northern Margin of the Tibetan Plateau

More Information
  • Received Date: July 02, 2023
  • Revised Date: September 23, 2024
  • Accepted Date: March 07, 2025
  • Available Online: March 11, 2025
  • HIGHLIGHTS
    (1) There are three Se-enriched types in the selenium-rich land on the northern margin of the Tibetan Plateau: arid saline lake sedimentary type, sulfide mineralization type and organic matter adsorption type.
    (2) The sedimentary selenium-rich land in arid saline lake has the characteristics of stable Se source, moderate total amount of Se, high effective amount, low heavy metals, and a variety of beneficial elements.
    (3) The sedimentary Se-renriched land in arid saline lakes can produce relatively high-quality selenium-rich agricultural products, which have high utilization value and great ecological potential.

    The study of the genesis type of Se-enriched land found in the Qinghai—Tibet Plateau can provide a scientific basis for the construction of the research, development and utilization system of selenium resources on the Qinghai—Tibet Plateau, and has practical significance for improving the risk of low Se intake on the Qinghai—Tibet Plateau. On the basis of summarizing the characteristics and genesis types of the main natural Se-enriched lands in China, the distribution characteristics of Se and related elements were analyzed through the coordinated monitoring of soil and rock, and it was concluded that there were three types of Se-enriched lands in the northern margin of the Qinghai—Tibet Plateau, namely, arid saline lake sedimentary type, sulfide mineralization type and organic matter adsorption type. (1) Se content is at 0.30-1.16mg/kg in the sedimentary Se-enriched land of arid saline lake, and the heavy metals are lower than the risk control screening value, and are spatially superimposed and enriched with beneficial elements such as Sr, Mg, Fe, Ca, Mo, etc., and selenium is derived from the red mudstone weathering of the Xining Group, which has the advantages of stable Se source sedimentation, moderate total amount of Se, low heavy metals, and composite of a variety of beneficial elements, and is a type of Se with greater ecological potential in the northern margin of the Qinghai—Tibet Plateau and even the entire northwest region. (2) Se content in sulfide mineralized Se-enriched land is at 0.30-2.22mg/kg; Ni, Cd, Cr and As have 0.2%-2.4% over-screening values, and As has 0.1% over-control values, heavy metals have a high background, with potential ecological risks and high climate, cold and cool suitable for the production of crops and other disadvantages, which can be used to develop the understory economy and wild Chinese herbal medicine industry under monitoring. (3) Se content in the organic matter adsorption type Se-enriched land was at 0.30-0.59mg/kg; Ni, Cd, Cr and As do not exceed the standard, and Se has the dual effects of increasing forage nutrition and resisting heavy metal absorption, and the maximum ecological effect of Se can be regulated by further exploring the equilibrium conditions of organic matter in the process of adsorption and release of selenium.

  • [1]
    唐志敏, 湛龙, 张晓东, 等. 基于生态位理论与AHP-TOPSIS模型的福建长汀县富硒土地资源综合评价[J]. 岩矿测试, 2024, 43(4): 592−602.

    Tang Z M, Zhan L, Zhang X D, et al. Comprehensive evaluation of selenium-enriched land resources in Changting County, Fujian Province based on niche theory and AHP-TOPSIS model[J]. Rock and Mineral Analysis, 2024, 43(4): 592−602.
    [2]
    Hilal T, Killam B Y, Grozdanovic M, et al. Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon[J]. Science, 2022, 376(6599): 1338−1343. doi: 10.1126/science.abg3875
    [3]
    Dalia A M, Loh T C, Sazili A Q, et al. Influence of bacterial organic selenium on blood parameters, immune response, selenium retention and intestinal morphology of broiler chickens[J]. BMC Veterinary Research, 2020, 16(1): 365. doi: 10.1186/s12917-020-02587-x
    [4]
    Zhang W X, Li Y, Deng H Y, et al. Effects of organic selenium on growth properties, selenium absorption and utilization, antioxidant activity and immunity in weaning piglets[J]. Food and Nutrition Sciences, 2020, 11(5): 385−395. doi: 10.4236/fns.2020.115028
    [5]
    王凌霄, 余涛, 李凤嫣, 等. 土壤中硒的生物有效性表征方法及影响因素研究进展[J]. 岩矿测试, 2023, 42(2): 239−253.

    Wang L X, Yu T, Li F Y, et al. A summary of research progress on bioavailability assessment method of selenium in soil and its influencing factors[J]. Rock and Mineral Analysis, 2023, 42(2): 239−253.
    [6]
    成晓梦, 吴超, 孙彬彬, 等. 浙江中部典型黑色岩系分布区土壤-作物富硒特征与重金属风险评价[J]. 现代地质, 2021, 35(2): 425−433.

    Cheng X M, Wu C, Sun B B, et al. Selenium-rich characteristics and risk assessment of heavy metals in soil and crop in a typical black shale area of the central part of Zhejiang Province, China[J]. Geoscience, 2021, 35(2): 425−433.
    [7]
    张建东, 王丽, 雒昆利, 等. 安康南部大巴山区硒过剩土壤分布及来源研究[J]. 土壤, 2022, 54(4): 847−855.

    Zhang J D, Wang L, Luo K L, et al. Distribution and source of selenium excess soils in Daba mountain area of southern Ankang[J]. Soils, 2022, 54(4): 847−855.
    [8]
    王玮, 王政, 孔祥意, 等. 基于INLA-SPDE模型的区域土壤硒元素空间预测及富硒区优选[J/OL]. 环境科学. (2024-08-20) [2025-03-07]. https://doi.org/10.13227/j.hjkx.202405093

    Wang W, Wang Z, Kong X Y, et al. Spatial prediction of selenium in soils by using INLA-SPDE approach and the delimitation of selenium-enriched land with low heavy metals pollution risk[J/OL]. Environmental Science. (2024-08-20) [2025-03-07]. https://doi.org/10.13227/j.hjkx.202405093
    [9]
    于龙龙, 吴磊, 张志敏, 等. 富硒区土壤养分质量评价: 以陕西省紫阳县闹热村为例[J]. 现代地质, 2021, 35(4): 923−930.

    Yu L L, Wu L, Zhang Z M, et al. Evaluation of soil nutrient quality in selenium-rich area: A case study of Naore Village, Ziyang County, Shannxi Province[J]. Geoscience, 2021, 35(4): 923−930.
    [10]
    陈继平, 任蕊, 王晖, 等. 关中塿土地区土壤pH变化对硒形态及有效性的影响[J]. 西北地质, 2020, 53(1): 254−260.

    Chen J P, Ren R, Wang H, et al. Selenium threshold for the delimitation of natural selenium-enriched land[J]. Northwestern Geology, 2020, 53(1): 254−260.
    [11]
    邹山进洪. 闽侯县表层土壤及农产品硒含量特征[J]. 物探与化探, 2023, 47(1): 247−256.

    Zou S J H. Selenium contents in surface soil and agricultural products in Minhou County[J]. Geophysical and Geochemical Exploration, 2023, 47(1): 247−256.
    [12]
    张亚峰, 姬丙艳, 沈骁, 等. 西宁盆地咸水湖相沉积型富硒土壤的形成机理及意义[J]. 物探与化探, 2023, 47(2): 470−476.

    Zhang Y F, Ji B Y, Shen X, et al. Formation mechanisms and significance of saline-lacustrine Se-rich soils in the Xining Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 470−476.
    [13]
    刘熙会, 张小平, 李倩倩, 等. 青藏高原地区大骨节病的流行特征及致病因素探究[J]. 环境化学, 2022, 41(4): 1137−1147. doi: 10.7524/j.issn.0254-6108.2021101302

    Liu X H, Zhang X P, Li Q Q, et al. Epidemiological trend and pathogenic factors of KBD in Qinghai—Tibet Plateau region[J]. Environmental Chemistry, 2022, 41(4): 1137−1147. doi: 10.7524/j.issn.0254-6108.2021101302
    [14]
    王婧, 李海蓉, 杨林生. 青藏高原大骨节病流行区环境、食物及人群硒水平研究[J]. 地理科学进展, 2020, 39(10): 1677−1686. doi: 10.18306/dlkxjz.2020.10.007

    Wang J, Li H R, Yang L S. Selenium levels in the environment, food, and human hair in Kashin-Beck Disease endemic areas of the Qinghai—Tibet Plateau[J]. Progress Neography, 2020, 39(10): 1677−1686. doi: 10.18306/dlkxjz.2020.10.007
    [15]
    周殷竹, 刘义, 王彪, 等. 青海省囊谦县农耕区土壤硒的富集因素[J]. 地质通报, 2020, 39(12): 1952−1959. doi: 10.12097/j.issn.1671-2552.2020.12.009

    Zhou Y Z, Liu Y, Wang B, et al. Soil selenium enrichment factors in agricultural area of Nangqian County, Qinghai Province[J]. Geological Bulletin of China, 2020, 39(12): 1952−1959. doi: 10.12097/j.issn.1671-2552.2020.12.009
    [16]
    奚小环, 侯青叶, 杨忠芳, 等. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095−1108.

    Xi X H, Hou Q Y, Yang Z F, et al. Big data based studies of the variation features of Chinese soil’s background value versus reference value: A paper written on the occasion of soil geochemical parameters of China’s publication[J]. Geophysical Prospecting and Geochemical Prospecting, 2021, 45(5): 1095−1108.
    [17]
    郑长远, 雷宏武, 崔银祥, 等. 西宁盆地南部天然CO2泄漏和浅部含水层响应[J]. 地质科技通报, 2023, 42(6): 223−232.

    Zheng C Y, Lei H W, Cui Y X, et al. Natural CO2 leakage and responses of shallow aquifers in the southern Xining Basin[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 223−232.
    [18]
    胥彪. 晚中新世西宁盆地沉积演化及环境变化[D]. 北京: 中国地质大学(北京), 2017.

    Xu B. Late Miocene sedimentary evolution and environmental changes in Xining Basin[D]. Beijing: China University of Geosciences, 2017.
    [19]
    马强, 苗国文, 朱明霞, 等. 干旱咸水湖沉积型富硒土地的划定及开发利用探讨——以青海省洪水泉为例[J/OL]. 物探与化探(2024-02-14) [2025-03-07]. https://link.cnki.net/urlid/11.1906.P.20250214.1041.002

    Ma Q, Miao G W, Zhu M X, et al. Discussion on delineation and exploitation of selenium-rich sedimentary land in arid saline lake——Take the case of Hongshuiquan in Qinghai Province [J]. Geophysical Prospecting and Geochemical Prospecting (2024-02-14) [2025-03-07]. https://link.cnki.net/urlid/11.1906.P.20250214.1041.002
    [20]
    康弋, 夏炎, 杜倩倩, 等. 洛阳市农田土壤中硒时空变化规律及其生态效应研究[J/OL]. 中国地质(2024-01-20) [2025-03-07]. https://link.cnki.net/urlid/11.1167.p.20250117.1708.016

    Kang G, Xia Y, Du Q Q, et al. Spatial and temporal variation of selenium in farmland soil and its ecological effect in Luoyang City [J]. Geology in China (2024-01-20) [2025-03-07]. https://link.cnki.net/urlid/11.1167.p.20250117.1708.016
    [21]
    吉恒召, 易志强, 李娇艳等. 豫西南寒武系黑色岩系中富硒岩石地球化学特征及成因[J]. 现代矿业, 2020, 36(6): 13−17,25. doi: 10.3969/j.issn.1674-6082.2020.06.004

    Ji H Z, Yi Z Q, Li Q Y, et al. Geochemical characteristics and genesis of selenium-rich rocks in the Cambrian black series in southwest Henan Province[J]. Modern Mining, 2020, 36(6): 13−17,25. doi: 10.3969/j.issn.1674-6082.2020.06.004
    [22]
    蒋天宇, 余涛, 侯青叶, 等. 基于DGT技术对土壤硒生物有效性及其影响因素的分析[J]. 现代地质, 2021, 35(3): 637−646.

    Jiang T Y, Yu T, Hou Q Y, et al. Analysis of soil selenium bioavailability and its influencing factors based on DGT technology[J]. Geoscience, 2021, 35(3): 637−646.
    [23]
    王美华. 浙西典型石煤矿山周边耕地富硒土壤地球化学特征及影响因素[J]. 现代地质, 2022, 36(3): 941−952.

    Wang M H. Geochemical characteristics and influencing factors of selenium-enriched soils in cultivated land around typical stone coal mines in western Zhejiang[J]. Geoscience, 2022, 36(3): 941−952.
    [24]
    曹锦山, 王伟, 李五福, 等. 青海拉脊山东段峡门蛇绿混杂岩带的物质确定及其构造意义[J]. 地质与资源, 2022, 31(6): 716−728.

    Cao J S, Wang W, Li W F, et al. Determination of the Xiamen ophiolite Melange in the eastern section of Laji Mountain, Qinghai Province: Tectonic implication[J]. Geology and Resources, 2022, 31(6): 716−728.
    [25]
    张亚峰, 苗国文, 马强, 等. 青海平安富Se土壤区环境及人体Se量调查[J]. 地球与环境, 2019, 47(5): 717−721.

    Zhang Y F, Miao Q W, Ma Q, et al. Investigations of the selenium content in human and the environment of Se-enriched soils in the Pingan district, Qinghai[J]. Earth and Environment, 2019, 47(5): 717−721.
    [26]
    来素涵, 孙阳阳, 李帅, 等. 土壤硒与有机质的作用机制及其对生物有效性的研究进展[J]. 中国无机分析化学, 2025, 15(2): 218−230.

    Lai S H, Sun Y Y, Li S, et al. Research progress on the mechanism of action of soil selenium and organic matter and its bioavailability[J]. Chinese Journal of Inorganic Analytical Chemistry, 2025, 15(2): 218−230.
    [27]
    钟信林. 寒区黑土有机质组成与演化过程及其富硒机制研究——以东北海伦为例[D]. 武汉: 中国地质大学, 2022.

    Zhong X L. Study on organic matter composition, evolutionary process and its significance of selenium enrichment of black soil in cold regions: A case study of Hailun, northeast China[D]. Wuhan: China University of Geosciences, 2022.
    [28]
    阳召文, 袁永强, 顾尚义, 等. 贵州黑色岩系和煤系地层发育的富硒黄壤中硒的空间分异特征[J]. 矿物岩石地球化学通报, 2024, 43(4): 809−818. doi: 10.3724/j.issn.1007-2802.20240061

    Yang Z W, Yuan Y Q, Gu S Y, et al. Spatial differentiation characteristics of selenium in Se-rich yellow soils developed from black shale and coal bearing formations in Guizhou Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(4): 809−818. doi: 10.3724/j.issn.1007-2802.20240061
    [29]
    肖凯琦, 徐宏根, 李毅, 等. 湖南省龙山县耕地土壤硒含量特征及其影响因素[J]. 环境化学, 2024, 43(2): 464−474. doi: 10.7524/j.issn.0254-6108.2022070402

    Xiao K Q, Xu H G, Li Y, et al. Characteristics and influencing factors of soil Se content in cultivated land in Longshan County, Hunan Province[J]. Environmental Chemistry, 2024, 43(2): 464−474. doi: 10.7524/j.issn.0254-6108.2022070402
    [30]
    周欣, 刘强, 丁小琴, 等. 江苏海安里下河平原地区富硒土地资源评价及开发潜力[J/OL]. 现代地质 (2024-03-09) [2025-03-07]. https://doi.org/10.19657/j.geoscience.1000-8527.2024.023.

    Zhou X, Liu Q, Ding X Q. et al. Evaluation and development potential of selenium-rich land resources in Lixiahe Plain of Hai’an City, Jiangsu[J/OL]. Geoscience (2024-03-09) [2025-03-07]. https://doi.org/10.19657/j.geoscience.1000-8527.2024.023.

Catalog

    Article views (0) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return