Citation: | ZHOU Wei,ZHANG Jiasheng,QI Xiaopeng,et al. Mineralogical Composition and Occurrence State of Lithium in Lithium-Enriched Claystone in the Zhenba Area, Southern Shaanxi, by X-Ray Diffraction and TIMA Analysis[J]. Rock and Mineral Analysis,2024,43(1):76−86. DOI: 10.15898/j.ykcs.202304170050 |
The newly discovered clay-type lithium ore (resources) in the upper Permian Wujiaping Formation in the Zhenba area of Shanxi Province has a maximum Li2O content of 0.39%, which reaches the industrial index of clay lithium ore (0.2%), and has certain development and utilization values. To determine the mineral’s composition of lithium-enriched claystone and the occurrence state of lithium, a microscope was used to preliminarily observe the mineral composition, X-ray diffraction (XRD) and TIMA (TESCAN Integrated Mineral Analyzer) were used to analyze clay minerals and the main elemental content. The lithium-enriched claystone in the Zhenba area is mainly composed of kaolinite, sudoite, illite, cookeite and hematite, containing a small amount of chlorite, rutile and other minerals. TIMA analysis shows that the highest content of cookeite is 8.94%, and the highest Li content is 0.12% (Li2O content is 0.26%), which is slightly lower than the whole rock Li2O value (0.31%). The cookeite is silky and irregularly granular, and is dispersed between boehmite, illite and sudoite. The results show that lithium in claystone occurs mainly in cookeite, and other clay minerals have low lithium content.
[1] |
王核, 黄亮, 白洪阳, 等. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 2022, 46(5): 848−866.
Wang H, Huang L, Bai H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: Review and perspective[J]. Geotectonica et Metallogenia, 2022, 46(5): 848−866.
|
[2] |
张英利, 陈雷, 王坤明, 等. 豫西巩义地区上石炭统本溪组泥岩地球化学和富锂特征及其控制因素[J]. 地球科学与环境学报, 2023, 45(2): 208−226.
Zhang Y L, Chen L, Wang K M, et al. Geochemistry and Li-rich characteristics of mudstones from upper Carboniferous Benxi Formation in Gongyi area, the Western Henan, China and their controlling factors[J]. Journal of Earth Science and Environment, 2023, 45(2): 208−226.
|
[3] |
温汉捷, 罗崇光, 杜胜江, 等. 碳酸盐黏土型锂资源的发现及意义[J]. 科学通报, 2020, 65(1): 53−59. doi: 10.1360/TB-2019-0179
Wen H J, Luo C G, Du S J, et al. Carbonate-hosted clay-type lithium deposit and its prospecting significance[J]. Chinese Science Bulletin, 2020, 65(1): 53−59. doi: 10.1360/TB-2019-0179
|
[4] |
姚双秋, 庞崇进, 温淑女, 等. 桂西上二叠统合山组富锂黏土岩的发现及意义[J]. 大地构造与成矿学, 2020, 45(5): 952−962.
Yao S Q, Pang C J, Wen S N, et al. Li-rich claystone in the upper Permian Heshan Formation in Western Guangxi and its prospecting significance[J]. Geotectonica et Metallogenia, 2020, 45(5): 952−962.
|
[5] |
邓旭升, 余文超, 杜远生, 等. 贵州狮溪铝土岩型锂资源的发现及意义[J]. 地质论评, 2023, 69(1): 1−15.
Deng X S, Yu W C, Du Y S, et al. Discovery and significance of Shixi bauxitite-type lithium deposit in Guizhou Province[J]. Geological Review, 2023, 69(1): 1−15.
|
[6] |
崔燚, 温汉捷, 于文修, 等. 滇中下二叠统倒石头组富锂黏土岩系锂的赋存状态及富集机制研究[J]. 岩石学报, 2022, 38(7): 2080−2094. doi: 10.18654/1000-0569/2022.07.16
Cui Y, Wen H J, Yu W X, et al. Study on the occurrence state and enrichment mechanism of lithium in lithium-rich clay rock series of the Daoshitou Formation of lower Permian in Central Yunnan[J]. Acta Petrologica Sinica, 2022, 38(7): 2080−2094. doi: 10.18654/1000-0569/2022.07.16
|
[7] |
Liu L, Liu X F, Yang S J, et al. Mineralogical and geochemical investigations on the early Permian Yuxi karstic bauxite deposit, Central Yunnan, China[J]. Ore Geology Reviews, 2023, 153: 105296. doi: 10.1016/j.oregeorev.2023.105296
|
[8] |
贾永斌, 于文修, 温汉捷, 等. 滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探[J]. 沉积学报, 2023, 41(1): 170−182.
Jia Y B, Yu W X, Wen H J, et al. Geochemical characteristic and sedimentary environment of Li-rich clay rocks at the southern margin of the Central Yunnan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 170−182.
|
[9] |
凌坤跃, 温汉捷, 张起钻, 等. 广西平果上二叠统合山组关键金属锂和铌的超异常富集与成因[J]. 中国科学:地球科学, 2021, 51(6): 853−873.
Ling K Y, Wen H J, Zhang Q Z, et al. Super-enrichment of lithium and niobium in the upper Permian Heshan Formation in Pingguo, Guangxi, China[J]. Science China: Earth Sciences, 2021, 51(6): 853−873.
|
[10] |
Ling K Y, Zhu X Q, Tang H S, et al. Geology and geochemistry of the Xiaoshanba bauxite deposit, Central Guizhou Province, SW China: Implications for the behavior of trice end rare earth elements[J]. Journal of Geochemical Exploration, 2018, 190: 170−186. doi: 10.1016/j.gexplo.2018.03.007
|
[11] |
赵浩男, 邢乐才, 何洪涛, 等. 广西平果上二叠统合山组铝土矿中铌的赋存状态[J]. 矿物学报, 2022, 42(4): 453−460.
Zhao H N, Xing L C, He H T, et al. The mode of occurrence of niobium in bauxite of the upper Permian Heshan Formation in the Pingguo area, Guangxi Autonomous Region, China[J]. Acta Mineralogica Sinica, 2022, 42(4): 453−460.
|
[12] |
梁航, 温淑女, 姚双秋, 等. 桂西上二叠统合山组锂超常富集黏土岩的物源分析与地质意义[J]. 桂林理工大学学报, 2022, 42(3): 535−548.
Ling H, Wen S N, Yao S Q, et al. Provenance analysis and geological significance of Li-rich claystone in upper Permian Heshan Formation, Western Guangxi[J]. Journal of Guilin University of Technology, 2022, 42(3): 535−548.
|
[13] |
覃顺桥, 雷美荣, 凌坤跃, 等. 桂中地区上二叠统合山组关键金属分布富集特征[J]. 矿物岩石地球化学通报, 2023, 42(1): 157−166.
Qin S Q, Lei M R, Ling K Y, et al. Distribution and enrichment characteristics of critical metals in the upper Permian Heshan Formation in the Central Guangxi[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(1): 157−166.
|
[14] |
叶小拼. 桂西沉积型锂资源潜力分析[J]. 地质与资源, 2020, 29(5): 429−434.
Ye X P. Resource potential analysis of sedimentary lithium deposits in West Guangxi region[J]. Geology and Resources, 2020, 29(5): 429−434.
|
[15] |
廖家隆, 李宝庆, 张福强, 等. 广西晚二叠世煤系沉积型锂矿研究现状及展望[J]. 中国煤炭地质, 2022, 34(10): 9−14.
Liao J L, Li B Q, Zhang F Q, et al. Research status and prospect of sedimentary lithium resources of late Permian coal measure in Guangxi[J]. Coal Geology of China, 2022, 34(10): 9−14.
|
[16] |
密静强, 陈远荣, 于浩, 等. 广西平果沉积型铝土矿Ga的分布特征与沉积环境关联性探讨[J]. 地质力学学报, 2022, 28(3): 417−431.
Mi J Q, Chen Y R, Yu H, et al. Correlation between the distribution characteristics of gallium and sedimentary environment of sedimentary bauxite in Pingguo County, Guangxi, China[J]. Journal of Geomechanics, 2022, 28(3): 417−431.
|
[17] |
崔燚, 罗重光, 徐林, 等. 黔中九架炉组富锂黏土岩系的风化成因及锂的富集规律[J]. 矿物岩石地球化学通报, 2018, 37(4): 696−704.
Cui Y, Luo C G, Xu L, et al. Weathering origin and enrichment of lithium in Central Guizhou Province, clay rocks of the Jiujialu Formation, Southwest China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(4): 696−704.
|
[18] |
惠博, 龚大兴, 陈伟, 等. 贵州六枝地区沉积型锂矿中锂的赋存状态研究[J]. 有色金属(选矿部分), 2021(2): 1-4.
Hui B, Gong D X, Chen W, et al. Study on the occurrence of lithium in sedimentary lithium deposits in Liuzhi area Guizhou Province[J]. Nonferrous Metals (Mineral Processing Section), 2021(2): 1-4.
|
[19] |
沈丽璞, 宋云华, 彭昭瑞, 等. 河南某地黏土矿中锂绿泥石的发现及初步研究[J]. 矿物学报, 1986, 6(1): 86−91.
Shen L P, Song Y H, Peng Z R, et al. Discovery and preliminary study of Li-chlorite in claystone from a certain location of Henan Province[J]. Acta Mineralogica Sinica, 1986, 6(1): 86−91.
|
[20] |
王新彦, 张荣臻, 杨松林, 等. 河南渑池地区铝土矿工艺矿物学及锂的赋存状态研究[J]. 矿产综合利用, 2020(6): 163−169.
Wang X Y, Zhang R Z, Yang S L, et al. Studying on the process mineralogy and existing state of lithium in bauxite ore from Mianchi district, Henan Province[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 163−169.
|
[21] |
李荣改, 宋翔宇, 高志, 等. 河南某地低品位含锂黏土矿提锂新工艺研究[J]. 矿冶工程, 2014, 34(6): 81−84.
Li R G, Song X Y, Gao Z, et al. New technology for extracting Li from low-grade lithium-bearing clay[J]. Mining and Metallurgical Engineering, 2014, 34(6): 81−84.
|
[22] |
Swain B. Recovery and recycling of lithium—A review[J]. Separation and Purification Technology, 2017, 172: 388−403. doi: 10.1016/j.seppur.2016.08.031
|
[23] |
朱士飞, 曹泊, 吴国强, 等. 广西上林万福矿区煤中锂、镓和稀土元素逐级提取实验研究[J]. 中国煤炭地质, 2021, 33(9): 38−41.
Zhu S F, Cao B, Wu G Q, et al. Experimental study of coal lithium, gallium and REE stepwise extraction in Wanfu mine area, Shanglin, Guangxi[J]. Coal Geology of China, 2021, 33(9): 38−41.
|
[24] |
徐璐, 惠博, 龚大兴, 等. 从黏土型锂矿中高效浸出锂的研究[J]. 有色金属(冶炼部分), 2021(9): 37−40.
Xu L, Hui B, Gong D X, et al. Study on high-efficient leaching of lithium from clay-type lithium ore[J]. Nonferrous Metals (Extractive Metallurgy), 2021(9): 37−40.
|
[25] |
朱丽, 顾汉念, 杨永琼, 等. 黏土型锂矿资源提锂工艺研究进展[J]. 轻金属, 2020(12): 8−13.
Zhu L, Gu H N, Yang Y Q, et al. Research progress of lithium extraction from clay-type lithium ore resources[J]. Light Metals, 2020(12): 8−13.
|
[26] |
石贵明, 周意超, 陈海蛟, 等. 滇中某沉积黏土型锂矿焙烧-酸浸工艺提锂试验研究[J]. 金属矿山, 2023(1): 199−203.
Shi G M, Zhou Y C, Chen H J, et al. Experiment study on lithium extraction with roasting and acid leaching process for a sedimentary clay-type lithium ore in Central Yunnan Province[J]. Metal and Mine, 2023(1): 199−203.
|
[27] |
Sui T, Song B T, Dluhos J, et al. Nanoscale chemical mapping of Li-ion battery cathode material by FIB-SEM and TOF-SIMS multi-modal microscopy[J]. Nano Energy, 2015, 17: 254−260. doi: 10.1016/j.nanoen.2015.08.013
|
[28] |
孔令安, 李正要, 钟振宇, 等. 黏土型锂矿硫酸铵焙烧-酸浸提锂[J]. 有色金属工程, 2022, 12(12): 66−72.
Kong L A, Li Z Y, Zhong Z Y, et al. Extraction of lithium by adding ammonium sulfate roasting-acid leaching from clay-type lithium ore[J]. Nonferrous Metals Engineering, 2022, 12(12): 66−72.
|
[29] |
钟振宇, 李正要, 孔令安, 等. 黏土型锂矿氯化焙烧-酸浸提锂工艺试验研究[J]. 有色金属(选矿部分), 2023(2): 63−70.
Zhong Z Y, Li Z Y, Kong L A, et al. Experimental study on clay-type lithium ore chlorination roasting-acid leaching to extract lithium process[J]. Nonferrous Metals (Mineral Processing Section), 2023(2): 63−70.
|
[30] |
朱丽, 杨永琼, 顾汉念, 等. 电感耦合等离子质谱-X射线衍射法研究云南玉溪和美国内华达地区黏土型锂资源矿物学特征[J]. 岩矿测试, 2021, 40(4): 532−541.
Zhu L, Yang Y Q, Gu H N, et al. Mineralogical characteristics of two clay-type lithium resources in Yuxi, China, and Nevada, the United States of America[J]. Rock and Mineral Analysis, 2021, 40(4): 532−541.
|
[31] |
夏瑜, 罗星, 吴杰, 等. 应用X粉晶衍射和SEM-EDX分析铝土矿物的微观结构与元素特征[J]. 轻金属, 2020(9): 6−12.
Xia Y, Luo X, Wu J, et al. Analysis of micro-structure and element of bauxite minerals by X-powder diffraction characteristics and SEM-EDX[J]. Light Metals, 2020(9): 6−12.
|
[32] |
Ling K Y, Tang H S, Zhang Z W, et al. Host minerals of Li–Ga–V–rare earth elements in Carboniferous karstic bauxites in Southwest China[J]. Ore Geology Reviews, 2020, 119: 103325. doi: 10.1016/j.oregeorev.2020.103325
|
[33] |
杨波, 杨莉, 沈茂森, 等. TIMA测试技术在白云鄂博矿床铌工艺矿物学中的应用[J]. 矿冶工程, 2021, 41(6): 65−68.
Yang B, Yang L, Shen M S, et al. Application of TIMA in process mineralogy study of niobium minerals in Bayan Obo deposit[J]. Mining and Metallurgical Engineering, 2021, 41(6): 65−68.
|
[34] |
陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345−368.
Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345−368.
|
[35] |
李秋杭, 谢远云, 康春国, 等. 基于人工和TIMA自动化方法的松花江水系重矿物组成: 对源-汇物源示踪的指示[J]. 海洋地质与第四纪地质, 2022, 42(3): 170−183.
Li Q H, Xie Y Y, Kang C G, et al. Heavy mineral composition of the Songhua River system identified by manual and TIMA automatic methods and implications for provenance tracing[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 170−183.
|
[36] |
温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121−129.
Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121−129.
|
[37] |
谢小敏, 李利, 袁秋云, 等. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1): 50−60.
Xie X M, Li L, Yuan Q Y, et al. Grain size distribution characterized by TIMA of organic matter and pyrite in Alum shales and its paleo-environmental significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50−60.
|
[38] |
Zhou Y, Fan F P, Xing G F, et al. Characteristics and genesis of the Fanshan lithocap, Zhejiang Province: Exploration implications from the largest alunite deposit of China[J]. Ore Geology Reviews, 2022, 149: 105038. doi: 10.1016/j.oregeorev.2022.105038
|
[39] |
Zhao L, Ward C R, French D, et al. Origin of a kaolinite-NH4-illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng Coalfield, Qinshui Basin, Northern China[J]. International Journal of Coal Geology, 2018, 185: 61−78. doi: 10.1016/j.coal.2017.11.013
|
[40] |
赵蕾, 王西勃, 代世峰. 煤系中的锂矿产: 赋存分布、成矿与资源潜力[J]. 煤炭学报, 2022, 47(5): 1750−1760.
Zhao L, Wang X B, Dai S F. Lithium resources in coal-bearing strata: Occurrence, mineralization and resource potential[J]. Journal of China Coal Society, 2022, 47(5): 1750−1760.
|
[41] |
薛颖瑜, 刘海洋, 孙卫东. 锂的地球化学性质与富集机理[J]. 大地构造与成矿学, 2021, 45(6): 1202−1215.
Xue Y Y, Liu H Y, Sun W D. The geochemical properties and enrichment mechanism of lithium[J]. Geotectonica et Metallogenia, 2021, 45(6): 1202−1215.
|
[42] |
钟海仁. 重庆南川铝土矿沉积物源及含矿岩系伴生锂赋存状态和富集机理研究[D]. 北京: 中国地质大学(北京), 2020.
Zhong H R. Provenance of bauxite, and occurrence state, enrichment mechanism of associated lithium in ore-bearing rocks of deposits in Nanchuan district, Chongqing[D]. Beijing: China University of Geosciences (Beijing), 2020.
|
[43] |
Jeldres R I, Uribe L, Cisternas L A, et al. The effect of clay minerals on the process of flotation of copper ores—A critical review[J]. Applied Clay Science, 2019, 170: 57−69. doi: 10.1016/j.clay.2019.01.013
|
[44] |
赵越, 马万平, 杨洋, 等. 黏土矿物对Li+的吸附实验研究——对黏土型锂矿成矿启示[J]. 矿物学报, 2022, 42(2): 141−153.
Zhao Y, Ma W P, Yang Y, et al. Experimental study on the adsorption of Li+ by clay minerals-implications for the mineralization of clay-type lithium deposit[J]. Acta Mineralogica Sinica, 2022, 42(2): 141−153.
|
[45] |
Crothers A R, Radke C J. A grahame triple-layer model unifies mica monovalent ion exchange, Zeta potential, and surface forces[J]. Advances in Colloid and Interface Science, 2021, 288: 102335. doi: 10.1016/j.cis.2020.102335
|
[46] |
钟海仁, 孙艳, 杨岳清, 等. 铝土矿(岩)型锂资源及其开发利用潜力[J]. 矿床地质, 2019, 38(4): 898−916.
Zhong H R, Sun Y, Yang Y Q, et al. Bauxite (aluminum)-type lithium resources and analysis of its development and utilization potential[J]. Mineral Deposits, 2019, 38(4): 898−916.
|
1. |
刘忠梅,周安梁. X射线衍射法快速测定铜精矿矿物组分的试验研究. 中国资源综合利用. 2024(05): 28-32 .
![]() |