Citation: | WANG Lan,CHU Quanli,GE Liangsheng,et al. Nuclear Forensic Analysis of Rare Earth Elements in Uranium Ore Concentrates[J]. Rock and Mineral Analysis,2024,43(4):622−631. DOI: 10.15898/j.ykcs.202302030013 |
The distribution pattern of rare earth elements (REEs) in uranium ore concentrates (UOC) is an important fingerprint information for geological source tracing in nuclear forensics. It is particularly important to accurately determine the content of rare earth elements in UOC. Because of the large amount of the uranium matrix effect, the ionization efficiency of rare earth elements is low when determined by ICP-MS, and the results are significantly low. It is most important to remove the uranium matrix for accurately determining rare earth elements in UOC. A rapid separation method for rare earth elements in UOC by study of experimental conditions of Eichrom TRU resin, such as equilibrium solution acidity of column, adsorption acidity, leaching acidity and volume of rare earth elements is established. The content of uranium in eluent is lower than ng/kg, the recovery of REEs ranges from 88.3% to 104.0%, and the detection limit of REEs through ICP-MS analysis is from 0.001μg/kg to 0.190μg/kg after the separation of uranium and rare earth elements in UOC by TRU Resin. This method is used to determine the standard material GBW04205 for uranium ore, and the measured values are consistent with the standard values. Further analysis of four samples of UOC from different sources shows that the method can accurately determine the rare earth elements in UOC. The established distribution pattern of rare earth elements is effective for the geographical traceability of UOC nuclear forensics.
[1] |
徐卓, 李力力, 朱留超, 等. Eichrom Sr树脂用于铀矿浓缩物中铅锶的分离富集研究[J]. 岩矿测试, 2019, 8(1): 55−61.
Xu Z, Li L L, Zhu L C, et al. Application of Eichrom Sr resin to the separation and enrichment of lead and strontium in uranium ore concentrates[J]. Rock and Mineral Analysis, 2019, 8(1): 55−61.
|
[2] |
Mercadier J, Cuney M, Lach P, et al. Origin of uranium deposits revealed by their rare element signature[J]. Terra Nova, 2011, 23(4): 264−269. doi: 10.1111/j.1365-3121.2011.01008.x
|
[3] |
姜小燕, 朱留超, 张燕, 等. 铀芯块的核法证分析及初步溯源[J]. 原子能科学技术, 2020, 54(2): 373−378.
Jiang X Y, Zhu L C, Zhang Y, et al. Study on nuclear forensic analysis and preliminary attribution of uranium pellet[J]. Atomic Energy Science and Technology, 2020, 54(2): 373−378.
|
[4] |
Keegan E, Kristo M J, Toole K, et al. Nuclear forensics: Scientific analysis supporting law enforcement and nuclear security investigations[J]. Analytical Chemistry, 2016, 88(3): 1496−1505. doi: 10.1021/acs.analchem.5b02915
|
[5] |
姜小燕, 李力力, 杜志明. 铀矿石浓缩物的地理溯源特征属性分析技术研究现状[J]. 原子能科学技术, 2020, 54(11): 2014−2023.
Jiang X Y, Li L L, Du Z M. Research status of geological traceability analysis of uranium ore concentrate[J]. Atomic Energy Science and Technology, 2020, 54(11): 2014−2023.
|
[6] |
Victoria E, Devlin McLoughlin D, Quinn R, et al. Determining provenance of uranium ore concentrates using 143Nd/144Nd[J]. Talanta, 2023, 253: 124088. doi: 10.1016/j.talanta.2022.124088
|
[7] |
Keegan E, Kristo M J, Colella M, et al. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia[J]. Forensic Science International, 2014, 240(3): 111−121.
|
[8] |
邵学鹏, 王昌斌, 汤磊, 等. 核取证的常用分析技术与研究进展[J]. 核材料与工程, 2015, 35(4): 757−765.
Shao X P, Wang C B, Tang L, et al. Analytic techniques and progress in nuclear forensics[J]. Nuclear Science and Engineering, 2015, 35(4): 757−765.
|
[9] |
Alexandre L, Marycel E, Maria A. An overview of spectrometric techniques and sample preparation for the determination of impurities in uranium nuclear fuel grade[J]. Microchemical Journal, 2013, 106(1): 194−201.
|
[10] |
黄声慧, 王同兴, 李力力, 等. 元素成像技术在核法证中的应用研究进展[J]. 中国无机分析化学, 2024, 14(6): 732−738.
Huang S H, Wang T X, Li L L, et al. Development and application of elemental imaging technology in nuclear forensics[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(6): 732−738.
|
[11] |
韩萧萧, 梁涛, 王思雨, 等. 电感耦合等离子体质谱联用技术在稀土元素物源指示研究中的应用进展[J]. 岩矿测试, 2023, 42(1): 1−15.
Han X X, Liang T, Wang S Y, et al. A review of research progress on provenance indication of rare earth elements by inductively coupled plasma-mass spectrometry hyphenated techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 1−15.
|
[12] |
陈晓薇, 陈秀玲, 周笑笑, 等. 霍童溪表层沉积物稀土元素特征及其物源示踪分析[J]. 地球环境学报, 2021, 12(5): 526−539.
Chen X W, Chen X L, Zhou X X, et al. Characteristics and trace analysis of rare earth elements in surface sediment of Huotong River[J]. Journal of Earth Environment, 2021, 12(5): 526−539.
|
[13] |
Wang L Q, Han X X, Liang T, et al. Discrimination of rare earth element geochemistry and co-occurrence in sediment from Poyang Lake, the largest freshwater lake in China[J]. Chemosphere, 2019, 217: 851−857. doi: 10.1016/j.chemosphere.2018.11.060
|
[14] |
Nance W B, Taylor S R. Rare-earth element patterns and crustal evolution-Ⅱ. Archean sedimentary-rocks from Kalgoorlie, Australia[J]. Geochimica Cosmochimica Acta, 1977, 41(2): 225−231. doi: 10.1016/0016-7037(77)90229-0
|
[15] |
Keegan E, Kristo M J, Colella M, et al. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia[J]. Forensic Science International, 2014, 240: 111−121. doi: 10.1016/j.forsciint.2014.04.004
|
[16] |
Spano T L, Simonetti A, Balboni E, et al. Trace element and U isotope analysis of uraninite and ore concentrate: Applications for nuclear forensic investigations[J]. Applied Geochemistry, 2017, 84: 277−285. doi: 10.1016/j.apgeochem.2017.07.003
|
[17] |
Mu L, Zhao Y G, Zhao L F, et al. Tracing origins of uranium ore concentrates (UOCs) by multidimensional statistical analysis of rare-earth impurities[J]. Journal of Analytical Atomic Spectrometry, 2015, 30: 396−402. doi: 10.1039/C4JA00354C
|
[18] |
Shao X P, Bu W T, Ni Y Y, et al. Origin assessment of uranium ores using multivariate statistical method based on their rare-earth elemental parameters[J]. Nuclear Analysis, 2022, 1(3): 1−7.
|
[19] |
Shiho A, Andreas L. LA-ICP-MS of rare earth elements concentrated in cation-exchange resin particles for origin attribution of uranium ore concentrate[J]. Talanta, 2015(135): 41−49.
|
[20] |
Zsolt V, Judit K, Maxim P, et al. Identification of uranium signals relevant for nuclear safeguards and forensics[J]. Journal of Radioanalysis Nuclear Chemistry, 2017, 312: 639−654. doi: 10.1007/s10967-017-5247-5
|
[21] |
Balboni E, Simonetti A, Spano T, et al. Rare-earth element fractionation in uranium ore and its U(Ⅵ) alteration minerals[J]. Applied Geochemistry, 2017, 87(C): 84−92.
|
[22] |
陈彦, 赵永刚, 李力力, 等. 电感耦合等离子体质谱测定铀样品年龄方法研究[J]. 原子能科学技术, 2020, 54(7): 1199−1204.
Chen Y, Zhao Y G, Li L L, et al. Age dating of uranium sample by ICP-MS[J]. Atomic Energy Science and Technology, 2020, 54(7): 1199−1204.
|
[23] |
Vargaa Z, Katonab R, Stefánkab Z, et al. Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry[J]. Talanta, 2010, 80: 1744−1749. doi: 10.1016/j.talanta.2009.10.018
|
[24] |
曾江萍, 王家松, 朱悦, 等. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素[J]. 岩矿测试, 2022, 41(5): 789−797.
Zeng J P, Wang J S, Zhu Y, et al. Determination of 15 rare earth elements in uranium ore by open acid dissolution-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(5): 789−797.
|
[25] |
万建军, 潘春蓉, 严杰, 等. 应用电子探针-扫描电镜研究陕西华阳川铀稀有多金属矿床稀土矿物特征[J]. 岩矿测试, 2021, 40(1): 145−155.
Wan J J, Pan C R, Yan J, et al. EMPA-SEM study on the rare earth minerals from the Huayangchuan uranium rare polymetallic deposit, Shaanxi Province[J]. Rock and Mineral Analysis, 2021, 40(1): 145−155.
|
[26] |
余关美, 时国. 赣中相山铀矿田基底变质岩稀土元素特征及其地质意义[J]. 东华理工大学学报(自然科学版), 2015, 38(4): 350−370.
Yu G M, Shi G. Characteristics of rare earth elements and the geological significance of the basement metamorphic rocks in Xiangshan uranium ore field in Central Jiangxi Province[J]. Journal of East China Institute of Technology (Natural Science Edition), 2015, 38(4): 350−370.
|
[27] |
Enrica B, Nina J, Tyler S, et al. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications[J]. Applied Geochemistry, 2016, 74: 24−32. doi: 10.1016/j.apgeochem.2016.08.016
|
[28] |
刘政国, 林锦荣, 王勇剑, 等. 江西相山铀矿田铀矿物稀土元素特征及富集机制探讨[J]. 铀矿地质, 2023, 39(3): 375−394.
Liu Z G, Lin J R, Wang Y J, et al. Characteristics of REE in uranium minerals and its enrichment mechanism in Xiangshan uranium ore field, Jiangxi[J]. Uranium Geology, 2023, 39(3): 375−394.
|
[29] |
陈佑纬, 胡瑞忠, 骆金诚, 等. 桂北沙子江铀矿床沥青铀矿原位微区年代学和元素分析: 对铀成矿作用的启示[J]. 岩石学报, 2019, 35(9): 2679−2694. doi: 10.18654/1000-0569/2019.09.04
Chen Y W, Hu R Z, Luo J C, et al. In-situ mineral chemistry and chronology analyses of the pitchblende in the Shazijiang uranium deposit and their implications for mineralization[J]. Acta Petrologica Sinica, 2019, 35(9): 2679−2694. doi: 10.18654/1000-0569/2019.09.04
|
[30] |
Hartwig E F, Sibylle S, Helene B. Uraninite chemistry as forensic tool for provenance analysis[J]. Applied Geochemistry, 2014, 48: 104−121. doi: 10.1016/j.apgeochem.2014.07.013
|
[31] |
Pierre M, Julien M, Julien P, et al. Post-crystallization alteration of natural uraninites: Implications for dating, tracing, and nuclear forensics[J]. Geochimica et Cosmochimica Acta, 2019, 249: 138−159. doi: 10.1016/j.gca.2019.01.025
|
1. |
唐帅,刘涛,丁洋. 基于ICP-MS法的地质勘探土壤样品中铂钯金含量测定分析. 世界有色金属. 2024(19): 190-192 .
![]() |