Citation: | SUN Xinyu,LI Lixing,LI Houmin,et al. The Ore-forming Age of the Uranium Mineralization Associated with Precambrian Sedimentary-Metamorphic Iron Deposits in Eastern Liaoning Province and Reliability Analysis of Dating Results[J]. Rock and Mineral Analysis,2023,42(6):1090−1103. DOI: 10.15898/j.ykcs.202301020001 |
The eastern Liaoning Province represents the eldest hydrothermal uranium ore cluster area in China. Two ore types are classified, including independent uranium mineralization and uranium mineralization associated with Precambrian sedimentary-metamorphic iron deposits. The ore-forming age of the former type has been well constrained at ~1.85Ga, whereas the age of the latter type remains uncertain. Iron deposit-associated uranium mineralization developed in the Wengquangou B-Mg-Fe deposit, the Gaojiagou Fe deposit, and the Gongchangling Fe deposit. Geochronological studies on uraninite of the Wengquangou deposit yielded variable ages ranging from 2.0 to 1.8Ga
To determine the metallogenic age and verify the accuracy of the age in uranium.
The instrument JXA-iHP200F was used for analysis, and the age was calculated according to Ranchin’s empirical formula
The calculated age of the Wengquangou deposit ranges from 1899 to 1324Ma, but it is mainly concentrated from 1899 to 1741Ma. Two peaks at 1859Ma and 1784Ma are constrained by an age frequency distribution histogram. This result is younger than the deposition age of the Liaohe Group. The age of the Gongchangling deposit ranges from 1858Ma to 1715Ma, with two peaks at 1865Ma and 1743Ma constrained by an age frequency distribution histogram. In the Wengquangou deposit, the position for uraninite LA-ICP-MS U-Pb dating corresponds to EPMA analytical points. The weighted mean ages are grouped into 1840±16Ma (MSWD=2.0) and 1787±8Ma (MSWD=0.95), which are consistent with the results obtained by EPMA. The loss of Pb can result in disruption of U-Th-Pb isotope system and thus affect the calculated ages. The loss of Pb can be probed because it is generally considered to be positively correlated with Si, Ca and Fe contents. The SiO2+CaO+FeO contents of most measuring spots of uraninite of the two deposits is less than 1%, and show no correlation with Pb contents, indicating that the loss of Pb is negligible.
The uranium mineralization associated with iron deposits has been constrained at ~1.85Ga and then experienced hydrothermal superposition at ~1.78Ga. The age results indicate that both the independent and iron ore-associated uranium mineralization in the eastern Liaoning Province was formed at ~1.85Ga, linking to a Proterozoic post-orogenic extensional environment in the eastern North China craton. The ore-forming fluids of different deposits of iron associated uranium deposits are all alkaline and oxidated but vary in fluid composition and temperature. This study highlights combined application of EPMA and LA-ICP-MS dating methods on uraninite, realizing the complementary advantages of spatial resolution and dating precision.