Citation: | KONG Weiheng,ZENG Lingwei,RAO Yu,et al. Laser-induced Breakdown Spectroscopy Based on Pre-classification Strategy for Quantitative Analysis of Rock Samples[J]. Rock and Mineral Analysis,2023,42(4):760−770. DOI: 10.15898/j.ykcs.202212190234 |
LIBS technology is a non-destructive, high sensitivity, high resolution spectroscopy technology that can be used to analyze the composition and structure of chemical substances and materials. It has extensive application in fields such as chemistry, materials science, life science, and geological exploration, and its emergence has provided new methods and technologies for the development of these fields. LIBS technology can be used to non-destructively analyze the chemical composition of underground rocks and minerals, helping geologists to better understand the composition and properties of underground resources, thus providing better guidance for geological exploration and development. In recent years, scholars at home and abroad have been exploring LIBS technology constantly, and through improving the detection system and optimizing laser pulse parameters, high sensitivity LIBS analysis at extremely low concentration has been achieved. By using finer spectral lines, higher sampling rate, and more precise laser pulse control, high resolution LIBS analysis at nanoscale has been achieved. The combination of LIBS technology with multi-spectral image processing technology can integrate information from multiple spectral channels to achieve a more comprehensive analysis of samples. However, the existence of matrix effects and spectral fluctuations always affects the accuracy of LIBS quantitative analysis, and poor reproducibility and high detection limits also need to be solved.
To improve the accuracy of quantitative analysis of complex matrix samples.
A multi-layer classification model based on k-nearest neighbors (kNN) and support vector machine (SVM) algorithms was constructed to identify the rock type of samples. The samples were divided into two major categories of felsic rocks and mafic rocks using the kNN algorithm, and then six categories were formed by the SVM algorithm. Different element quantitative models were constructed for each rock type. The kNN algorithm was selected using cross-validation to determine the optimal
Due to the influence of matrix effects, a single pre-processing method is not suitable for all elements in quantitative analysis. Therefore, in order to improve the accuracy and stability of quantitative analysis, different methods are used to pre-process the data. For different pre-processing methods, the
By utilizing a multi-layer classification model for preliminary categorization, standard rock samples that match the matrix are obtained. Subsequently, quantitative analysis models are developed for samples with similar matrices. Employing distinct preprocessing methods for different elemental compositions within various rock types helps mitigate spectral discrepancies caused by matrix effects, reduces spectral fluctuations and data noise, and enhances the accuracy and stability of quantitative analysis. Standard curve models are then established for each element, enabling quantitative analysis of Si, Ca, Mg, and K elements in six categories of rock samples. Results demonstrate a notable improvement in the accuracy of quantitative analysis compared to traditional standard curve models. This model not only diminishes the impact of matrix effects on quantitative analysis but also corrects instabilities arising from hardware, environmental conditions, and sample variations. Furthermore, it alleviates the workload of data analysis, simplifying the analytical process and thereby boosting efficiency. However, the current multi-layer quantitative analysis model still exhibits some deviations in regard to different elements. In the future, a potential avenue is to consider integrating various algorithms to establish preliminary classification models, aiming for even better quantitative analysis outcomes.