• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LIU Xiao,ZHANG Qiyan,SHI Weixin,et al. Mineralogical Characteristics of Carbonate Rocks of the Upper Triassic Bolila Formation in the Eastern Part of the North Qiangtang Basin[J]. Rock and Mineral Analysis,2024,43(3):440−448. DOI: 10.15898/j.ykcs.202212010227
Citation: LIU Xiao,ZHANG Qiyan,SHI Weixin,et al. Mineralogical Characteristics of Carbonate Rocks of the Upper Triassic Bolila Formation in the Eastern Part of the North Qiangtang Basin[J]. Rock and Mineral Analysis,2024,43(3):440−448. DOI: 10.15898/j.ykcs.202212010227

Mineralogical Characteristics of Carbonate Rocks of the Upper Triassic Bolila Formation in the Eastern Part of the North Qiangtang Basin

More Information
  • Received Date: November 30, 2022
  • Revised Date: October 21, 2023
  • Accepted Date: January 11, 2024
  • Available Online: June 20, 2024
  • Carbonate rocks of the upper Triassic Bolila Formation in the eastern area of the North Qiangtang Basin are important tight oil and gas reservoirs. Due to the influence of sedimentation and diagenesis, the mineral particles are mostly less than 1mm. Analytical methods such as modular automated processing system (MAPS) based on the backscattered electron and automatic mineral identification system (QEMSCAN) were used to analyze the minerals and to research their composition, morphology and structure on a microscopic scale for four samples. The vertical variation of the minerals shows that at the bottom, the mineral composition is dominated by quartz and calcite, and the roundness of mineral particles is poor. The quartz content is relatively high in the middle. The terrigenous minerals and calcite bands are staggered. At the top, the carbonate mineral content is more than 90%, and layered dolomitization occurs locally. Mineral characteristics indicate that the source of Borila Formation sediments is affected by both shallow marine and terrigenous clastics. The supply of terrigenous clastics was relatively sufficient in the early stage. Subsequently, the supply of terrigenous clastics decreased, and the content of carbonate minerals increased gradually. The sedimentary environment was dominated by carbonate deposits at the late period of the Borila Formation.

  • [1]
    曾溅辉, 杨智峰, 冯枭, 等. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展, 2014, 29(6): 651−661. doi: 10.11867/j.issn.1001-8166.2014.06.0651

    Zeng J H, Yang Z F, Feng X, et al. Study status and key scientific issue of tight reservoir oil and gas accumulation mechanism[J]. Advances in Earth Science, 2014, 29(6): 651−661. doi: 10.11867/j.issn.1001-8166.2014.06.0651
    [2]
    朱筱敏, 潘荣, 朱世发, 等. 致密储层研究进展和热点问题分析[J]. 地学前缘, 2018, 25(2): 141−146.

    Zhu X M, Pan R, Zhu S F, et al. Research progress and core issues in tight reservoir exploration[J]. Earth Science Frontiers, 2018, 25(2): 141−146.
    [3]
    邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 91(6): 979−1007. doi: 10.3969/j.issn.0001-5717.2015.06.001

    Zou C N, Yang Z, Zhu R K, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 91(6): 979−1007. doi: 10.3969/j.issn.0001-5717.2015.06.001
    [4]
    邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(4): 575−587. doi: 10.11698/PED.2018.04.04

    Zou C N, Yang Z, He D B, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4): 575−587. doi: 10.11698/PED.2018.04.04
    [5]
    贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129−136.

    Jia C Z, Zheng M, Zhang Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129−136.
    [6]
    邹才能, 贾进华, 侯连华, 等. “连续型”油气藏及其在全球的重要性: 成藏、分布与评价[J]. 石油勘探与开发, 2009, 36(6): 669−682. doi: 10.3321/j.issn:1000-0747.2009.06.001

    Zou C N, Jia J H, Hou L H, et al. Global importance of “continuous” petroleum reservoirs: Accumulation, distribution and evaluation[J]. Petroleum Exploration and Development, 2009, 36(6): 669−682. doi: 10.3321/j.issn:1000-0747.2009.06.001
    [7]
    吕利刚, 张涛, 李杰, 等. 储层矿物类型对致密油藏CO2驱替效果的影响[J]. 大庆石油地质与开发, 2023, 42(1): 159−168.

    Lyu L G, Zhang T, Li J, et al. Influence of reservoir mineral types on CO2 displacement effect of tight reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(1): 159−168.
    [8]
    尤源, 梁晓伟, 冯胜斌, 等. 鄂尔多斯盆地长7段致密储层主要黏土矿物特征及其地质意义[J]. 天然气地球科学, 2019, 30(8): 1233−1241. doi: 10.11764/j.issn.1672-1926.2019.05.023

    You Y, Liang X W, Feng S B, et al. Features and geological significance of main clay minerals in Chang 7 tight sandstone reservoir, Ordos Basin[J]. Natural Gas Geoscience, 2019, 30(8): 1233−1241. doi: 10.11764/j.issn.1672-1926.2019.05.023
    [9]
    汪贺, 师永民, 徐大卫, 等. 非常规储层孔隙结构表征技术及进展[J]. 油气地质与采收率, 2019, 26(5): 21−30.

    Wang H, Shi Y M, Xu D W, et al. Unconventional reservoir pore structure characterization techniques and progress[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(5): 21−30.
    [10]
    Lu Y Y, Chen X Y, Tang J T, et al. Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation[J]. Energy, 2019, 172: 270−285. doi: 10.1016/j.energy.2019.01.063
    [11]
    黄道军, 李新虎, 刘燕, 等. 鄂尔多斯盆地中东部本溪组致密砂岩储层特征及有利层段优选[J]. 西安科技大学学报, 2023, 43(1): 109−118.

    Huang D J, Li X H, Liu Y, et al. Characteristics and favorable intervals selection of tight sandstone reservoirs in Benxi Formation, Central-Eastern Orddos Basin[J]. Journal of Xi’an University of Science and Technology, 2023, 43(1): 109−118.
    [12]
    朱如凯, 金旭, 王晓琦, 等. 复杂储层多尺度数字岩石评价[J]. 地球科学, 2018, 43(5): 1773−1782.

    Zhu R K, Jin X, Wang X Q, et al. Multi-scale digital rock evaluation on complex reservoir[J]. Earth Science, 2018, 43(5): 1773−1782.
    [13]
    林承焰, 吴玉其, 任丽华, 等. 数字岩心建模方法研究现状及展望[J]. 地球物理学进展, 2018, 33(2): 679−689. doi: 10.6038/pg2018BB0335

    Lin C Y, Wu Y Q, Ren L H, et al. Review of digital core modeling methods[J]. Progress in Geophysics, 2018, 33(2): 679−689. doi: 10.6038/pg2018BB0335
    [14]
    陈秀娟, 刘之的, 刘宇曦, 等. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22−31.

    Chen X J, Liu Z D, Liu Y X, et al. Research into the pore structure of tight reservoirs: A review[J]. Geophysical and Geochemical Exploration, 2022, 46(1): 22−31.
    [15]
    于兴河, 李顺利, 杨志浩. 致密砂岩气储层的沉积-成岩成因机理探讨与热点问题[J]. 岩性油气藏, 2015, 27(1): 1−13. doi: 10.3969/j.issn.1673-8926.2015.01.001

    Yu X H, Li S L, Yang Z H. Discussion on deposition-diagenesis genetic mechanism and hot issues of tight sandstone gas reservoir[J]. Lithologic Reservoirs, 2015, 27(1): 1−13. doi: 10.3969/j.issn.1673-8926.2015.01.001
    [16]
    刘亢, 曹代勇, 林中月, 等. 湘西北地区下志留统龙马溪组页岩矿物成分特征及意义[J]. 海相油气地质, 2018, 23(2): 70−76. doi: 10.3969/j.issn.1672-9854.2018.02.009

    Liu K, Cao D Y, Lin Z Y, et al. Characteristics and significance of mineral compositions of shale in lower Silurian Longmaxi Formation, Northwestern Hu’nan[J]. Marine Origin Petroleum Geology, 2018, 23(2): 70−76. doi: 10.3969/j.issn.1672-9854.2018.02.009
    [17]
    王坤阳, 杜谷, 杨玉杰, 等. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征[J]. 岩矿测试, 2014, 33(5): 634−639. doi: 10.3969/j.issn.0254-5357.2014.05.004

    Wang K Y, Du G, Yang Y J, et al. Characteristics study of reservoirs pores and mineral compositions for black shale, Northern Guizhou, by using SEM and X-ray EDS[J]. Rock and Mineral Analysis, 2014, 33(5): 634−639. doi: 10.3969/j.issn.0254-5357.2014.05.004
    [18]
    冯笑含, 赵万春, 王婷婷. 非均质致密储层微观力学特征分析及脆性评价方法研究[J]. 特种油气藏, 2019, 26(6): 113−117. doi: 10.3969/j.issn.1006-6535.2019.06.021

    Feng X H, Zhao W C, Wang T T. Micromechanical analysis and brittleness evaluation of heterogeneous tight reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(6): 113−117. doi: 10.3969/j.issn.1006-6535.2019.06.021
    [19]
    肖光武, 刘丽萍, 秦文凯, 等. 应用矿物成分评价致密油储集层脆性方法[J]. 录井工程, 2017, 28(2): 66−71, 139−140. doi: 10.3969/j.issn.1672-9803.2017.02.014

    Xiao G W, Liu L P, Qin W K, et al. Application of mineral composition to evaluating the brittleness of tight oil reservoir[J]. Mud Logging Engineering, 2017, 28(2): 66−71, 139−140. doi: 10.3969/j.issn.1672-9803.2017.02.014
    [20]
    沈安江, 付小东, 张建勇, 等. 羌塘盆地上三叠统—下侏罗统海相页岩油特征及发现意义[J]. 石油勘探与开发, 2023, 50(5): 962−974. doi: 10.11698/PED.20230001

    Shen A J, Fu X D, Zhang J Y, et al. Characteristics and discovery significance of the upper Triassic—lower Jurassic marine shale oil in Qiangtang Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(5): 962−974. doi: 10.11698/PED.20230001
    [21]
    杨易卓, 黄志龙, 赵珍, 等. 羌塘盆地毕洛错地区古油藏地球化学特征与油源对比[J]. 地球科学, 2022, 47(5): 1834−1848. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205021

    Yang Y Z, Huang Z L, Zhao Z, et al. Geochemical characteristics and oil source correlation of paleo-reservoirs in Biluocuo area, Qiangtang Basin[J]. Editorial Committee of Earth Science—Journal of China University of Geosciences, 2022, 47(5): 1834−1848. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205021
    [22]
    王剑, 付修根. 论羌塘盆地沉积演化[J]. 中国地质, 2018, 45(2): 237−259. doi: 10.12029/gc20180203

    Wang J, Fu X G. Sedimentary evolution of the Qiangtang Basin[J]. Geology in China, 2018, 45(2): 237−259. doi: 10.12029/gc20180203
    [23]
    刘中戎, 杨平, 张国常, 等. 北羌塘坳陷上三叠统沉积模式及对油气勘探的启示[J]. 沉积与特提斯地质, 2022, 42(3): 465−480.

    Liu Z R, Yang P, Zhang G C, et al. Sedimentary model and its implications for oil and gas exploration of upper Triassic in Northern Qiangtang Depression[J]. Sedimentary Geology and Tethyan Geology, 2022, 42(3): 465−480.
    [24]
    曾胜强, 王剑, 陈文彬, 等. 羌塘盆地东部晚三叠世—早中侏罗世沉积环境转变研究——来自地质浅钻岩芯的证据[J]. 地质论评, 2021, 67(5): 1231−1244.

    Zeng S Q, Wang J, Chen W B, et al. Late Triassic to early—middle Jurassic depositional environment transformation process study in the Eastern Qiangtang Basin: Evidence from the record by the core samples[J]. Geological Review, 2021, 67(5): 1231−1244.
    [25]
    王剑, 付修根, 沈利军, 等. 论羌塘盆地油气勘探前景[J]. 地质论评, 2020, 66(5): 1091−1113.

    Wang J, Fu X G, Shen L J, et al. Prospect of the potential of oil and gas resources in Qiangtang Basin, Xizang (Tibet)[J]. Geological Review, 2020, 66(5): 1091−1113.
    [26]
    刘若涵, 何碧竹, 郑孟林, 等. 羌塘盆地东部晚三叠世—侏罗纪构造-沉积演化[J]. 岩石学报, 2019, 35(6): 1857−1874.

    Liu R H, He B Z, Zheng M L, et al. Tectonic-sedimentary evolution during late Triassic—Jurassic period in the eastern part of the Qiangtang Basin, Tibet[J]. Acta Petrologica Sinica, 2019, 35(6): 1857−1874.
    [27]
    张启燕, 史维鑫, 刘晓, 等. 高光谱扫描在碳酸盐岩矿物组成分析中的应用[J]. 岩矿测试, 2022, 41(5): 815−825.

    Zhang Q Y, Shi W X, Liu X, et al. Application of hyperspectral scanning in mineral composition analysis of carbonate rocks[J]. Rock and Mineral Analysis, 2022, 41(5): 815−825.

Catalog

    Article views (102) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return