Citation: | WU Chao,SUN Binbin,CHENG Xiaomeng,et al. Cadmium Bioavailability Based on Diffusive Gradients in Thin Films Technique and Conventional Chemical Extraction in High Geological Background Soil Area of Northwestern Zhejiang Province, China[J]. Rock and Mineral Analysis,2023,42(4):823−838. DOI: 10.15898/j.ykcs.202211230223 |
High geochemical background has a greater impact on soil Cd pollution than human activities and is more detrimental to the environment and human health on a regional level. Research shows that the bioavailability of Cd in soil is the key factor to determine its bioavailability and biotoxicity, so it is of great theoretical and practical significance to find an effective method to evaluate the bioavailability of Cd in soil for the safe use and risk control of contaminated agricultural land. Single extraction methods with relatively simple operation and relatively low cost and sequential extraction methods providing morphological distribution feature information, are the most common methods for evaluation of heavy metals bioavailability in soil. In general, the available amount of soil heavy metals obtained by chemical extraction methods can better reflect the level of plant absorption than the total amount. However, chemical extraction methods have some drawbacks, including differences between the extraction principle and crop absorption process, a lack of universality in the extracts, redistribution and re-adsorption during the extraction process, and most notably, the failure to take into account dynamic changes in heavy metal concentrations in the root environment. Diffusive gradients in thin-films (DGT) technique is a new biomimetic
(1) The total content and fraction distribution characteristics of Cd in soil. The results show that the Cd average contents in paddy soil and dry soil in the study area are 1.07mg/kg and 0.73mg/kg, respectively, remarkably higher than the background values of soil in Zhejiang Province and China. The abnormal enrichment of Cd is mainly related to the widespread black shale in Northwest Zhejiang. For the sequential extraction procedures, the average content in paddy soil of water-soluble and exchangeable Cd, carbonate-bound Cd, humic acid-bound Cd, Fe-Mn oxide-bound Cd, strong organic-bound Cd and residual Cd are 54%, 5.9%, 9.3%, 13.5%, 4.2% and 13.2%, respectively. The average content in dry soil of water-soluble and exchangeable Cd, carbonate-bound Cd, humic acid-bound Cd, Fe-Mn oxide-bound Cd, strong organic-bound Cd and residual Cd are 47.2%, 4.6%, 11.5%, 14.3%, 5.5% and 16.9%, respectively. On the whole, the bioavailable component of Cd in the study area accounts for a relatively high proportion. (2) Characteristics of Cd content in crop. The content of Cd in rice seed in the study area ranges from 0.01mg/kg to 3.29mg/kg, with an average of 0.26mg/kg. The Cd content in bok choy ranges from 0.01mg/kg to 0.31mg/kg, with an average of 0.08mg/kg. In comparison to China’s contaminant limit of national food safety standards (GB2762—2017), the over-standard rates of Cd in rice and bok choy are 34% and 10%, respectively. The soil samples are further assessed according to
(1) Results of DGT technique. The available Cd (
[1] |
杨杰,董静,宋洲,等. 鄂西铜铅锌尾矿库周边农田土壤-水稻重金属污染状况及风险评价[J]. 岩矿测试, 2022, 41(5): 867−879.
Yang J,Dong J,Song Z,et al. Heavy metal pollution characteristics and risk assessment of soil and rice in farmland around the copper-lead-zinc tailing,western Hubei Province[J]. Rock and Mineral Analysis, 2022, 41(5): 867−879.
|
[2] |
马生明,朱立新,汤丽玲,等. 城镇周边和江河沿岸土壤中Hg和Cd存在形式解析与生态风险评估[J]. 岩矿测试, 2020, 39(2): 225−234.
Ma S M,Zhu L X,Tang L L,et al. The occurrences of Hg and Cd in soils around cities and rivers and their ecological risk assessment[J]. Rock and Mineral Analysis, 2020, 39(2): 225−234.
|
[3] |
唐豆豆,袁旭音,汪宜敏,等. 地质高背景农田土壤中水稻对重金属的富集特征及风险预测[J]. 农业环境科学学报, 2018, 37(1): 18−26.
Tang D D,Yuan X Y,Wang Y M. Enrichment characteristics and risk prediction of heavy metals for rice grains growing in paddy soils with a high geological background[J]. Journal of Agro-Environment Science, 2018, 37(1): 18−26.
|
[4] |
马宏宏,彭敏,刘飞,等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449−459.
Ma H H,Peng M,Liu F,et al. Bioavailability,translocation,and accumulation characteristics of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi,China[J]. Environmental Science, 2020, 41(1): 449−459.
|
[5] |
赵万伏,宋垠先,管冬兴,等. 典型黑色岩系分布区土壤重金属污染与生物有效性研究[J]. 农业环境科学学报, 2018, 37(7): 1332−1341.
Zhao W F,Song Y X,Guan D X,et al. Pollution status and bioavailability of heavy metals in soils of a typical black shale area[J]. Journal of Agro-Environment Science, 2018, 37(7): 1332−1341.
|
[6] |
成晓梦,吴超,孙彬彬,等. 浙江中部典型黑色岩系分布区土壤-作物富硒特征与重金属风险评价[J]. 现代地质, 2021, 35(2): 1−9.
Cheng X M,Wu C,Sun B B,et al. Selenium-rich characteristics and risk assessment of heavy metals in soil and crop in a typical black shale area of the central part of Zhejiang Province,China[J]. Geoscience, 2021, 35(2): 1−9.
|
[7] |
程志中, 谢学锦, 冯济舟, 等. 中国南方地区地球化学图集[M]. 北京: 地质出版社, 2015: 47.
Cheng Z Z, Xie X J, Feng J Z, et al. Geochemical atlas of Southern China[M]. Beijing: Geological Publishing House, 2015: 47.
|
[8] |
宋明义. 浙西地区下寒武统黑色岩系中硒与重金属的表生地球化学及环境效应[D]. 合肥: 合肥工业大学, 2009: 23-24.
Song M Y. Epigenetic geochemistry and environmental effects of selenium and heavy metals in the lower Cambrian black rock series in Western Zhejiang[D]. Hefei: Hefei Polytechnic University, 2009: 23-24.
|
[9] |
李财,任明漪,石丹,等. 薄膜扩散梯度(DGT)——技术进展及展望[J]. 农业环境科学学报, 2018, 37(3): 2613−2628.
Li C,Ren M Y,Shi D,et al. Diffusive gradient in thin films (DGT):Technological progress and prospects[J]. Journal of Agro-Environment Science, 2018, 37(3): 2613−2628.
|
[10] |
魏天娇,管冬兴,方文,等. 梯度扩散薄膜技术(DGT)的理论及其在环境中的应用 Ⅲ:植物有效性评价的理论基础与应用潜力[J]. 农业环境科学学报, 2018, 37(5): 841−849.
Wei T J,Guan D X,Fang W,et al. Theory and application of diffusive gradients in thin-films (DGT) in the environment Ⅲ:Theoretical basis and application potential in phytoavailability assessment[J]. Journal of Agro-Environment Science, 2018, 37(5): 841−849.
|
[11] |
Williams P N,Zhang H,Davison W,et al. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils[J]. Environmental Science & Technology, 2011, 45: 6080−6087.
|
[12] |
陈莹,刘汉燚,刘娜,等. 农地土壤重金属Pb和Cd有效性测定方法的筛选与评价[J]. 环境科学, 2021, 42(7): 3494−3506.
Chen Y,Liu H Y,Liu N,et al. Screening and evaluation of methods for determining available lead (Pb) and cadmium (Cd) in farmland soil[J]. Environmental Science, 2021, 42(7): 3494−3506.
|
[13] |
高慧,宋静,吕明超,等. DGT和化学提取法评价贵州赫章土法炼锌区污染土壤中镉的植物吸收有效性[J]. 农业环境科学学报, 2017, 36(10): 1992−1999.
Gao H,Song J,Lyu M C,et al. Evaluation of cadmium phytoavailability in soils from a zinc smelting area in Hezhang County,Guizhou Province,using diffusive gradients in thin films and conventional chemical extractions[J]. Journal of Agro-Environment Science, 2017, 36(10): 1992−1999.
|
[14] |
宋宁宁,王芳丽,沈跃,等. 梯度薄膜扩散技术(DGT)与传统化学方法评估黑麦草吸收Cd的对比[J]. 环境化学, 2012, 31(12): 1960−1967.
Song N N,Wang F L,Shen Y,et al. Comparison of the method of diffusive gradients in thin films with traditional chemical extraction techniques for evaluating cadmium bioavailability in ryegrass[J]. Environmental Chemistry, 2012, 31(12): 1960−1967.
|
[15] |
吴超,孙彬彬,陈海杰,等. 应用梯度扩散薄膜技术评价天然富硒土壤中硒的生物有效性[J]. 岩矿测试, 2022, 41(1): 66−79. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201007
Wu C,Sun B B,Chen H J,et al. Assessment of selenium bioavailability in natural selenium-rich soil based on diffusive gradients in thin films[J]. Rock and Mineral Analysis, 2022, 41(1): 66−79. doi: 10.3969/j.issn.0254-5357.2022.1.ykcs202201007
|
[16] |
Houba V J G,Temminghoff E J M,Gaikhorst G A,et al. Soil analysis procedures using 0.01M calcium chloride as extraction reagent[J]. Communications in Soil Science and Plant Analysis, 2000, 31(9/10): 1299−1396.
|
[17] |
董岩翔, 郑文, 周建华, 等. 浙江省土壤地球化学背景值[M]. 北京: 地质出版社, 2007: 130−131.
Dong Y X, Deng W, Zhou J H, et al. Soil geochemical background values in Zhejiang Province[M]. Beijing: Geological Publishing House, 2007: 130−131.
|
[18] |
侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数(下册)[M]. 北京: 地质出版社, 2020: 2620−2621.
Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters in China (Part Ⅱ)[M]. Beijing: Geological Publishing House, 2020: 2620−2621.
|
[19] |
王学求,周建,徐善法,等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469−1480.
Wang X Q,Zhou J,Xu S F,et al. China soil geochemical baselines networks:Data characteristics[J]. Geology in China, 2016, 43(5): 1469−1480.
|
[20] |
Lund L J,Betty E E,Page A L,et al. Occurrence of naturally high cadmium levels in soils and its accumulation by vegetation[J]. Journal of Environmental Quality, 1981, 10(4): 551−556.
|
[21] |
Park M,Chon H T,Marton L. Mobility and accumulation of selenium and its relationship with other heavy metals in the system rocks/soils-crops in areas covered by black shale in Korea[J]. Journal of Geochemical Exploration, 2010, 107(2): 161−168. doi: 10.1016/j.gexplo.2010.09.003
|
[22] |
刘意章,肖唐付,熊燕,等. 西南高镉地质背景区农田土壤与农作物的重金属富集特征[J]. 环境科学, 2019, 40(6): 2877−2884.
Liu Y Z,Xiao T F,Xiong Y,et al. Accumulation of heavy metals in agricultural soils and crops from an area with high geochemical background of cadmium,Southwestern China[J]. Environmental Science, 2019, 40(6): 2877−2884.
|
[23] |
Han T,Fan S F,Zhu X Q,et al. Submarine hydrothermal contribution for extreme element accumulation during the early Cambrian,South China[J]. Ore Geology Reviews, 2017, 86: 297−308. doi: 10.1016/j.oregeorev.2017.02.030
|
[24] |
Alamgir M. The effects of soil properties to the extent of soil contamination with metals[A]//Hasegawa H, Rahman I M M, Rahman M A. Environmental remediation technologies for metal-contaminated soils[M]. Tokyo: Springer, 2016: 1−19.
|
[25] |
宋波,肖乃川,马丽钧,等. 基于DGT技术的广西碳酸盐岩区稻米镉含量主控因素[J]. 环境科学, 2022, 43(1): 463−471.
Song B,Xiao N C,Ma L J,et al. Main control factors of cadmium content in rice in carbonate rock region of Guangxi based on DGT technique[J]. Environmental Science, 2022, 43(1): 463−471.
|
[26] |
Chen H Y,Yuan X Y,Li T Y,et al. Characteristics of heavy metal transfer and their influencing factors in different soil-crop systems of the industrialization region,China[J]. Ecotoxicology & Environmental Safety, 2016, 126(2): 193−201.
|
[27] |
倪卫东,朱凰㮠,冯先翠,等. 东莞Cd轻度污染土壤种植水稻安全风险评估[J]. 安徽农业科学, 2022, 50(10): 41−45.
Ni W D,Zhu F R,Feng X C,et al. Safety risk assessment of rice planting on Cd slightly polluted soil in Dongguan[J]. Journal of Anhui Agricultural Sciences, 2022, 50(10): 41−45.
|
[28] |
白宇明,李永利,周文辉,等. 典型工业城市土壤重金属元素形态特征及生态风险评估[J]. 岩矿测试, 2022, 41(4): 632−641.
Bai Y M,Li Y L,Zhou W H,et al. Speciation characteristics and ecological risk assessment of heavy metal elements in soils of typical industrial city[J]. Rock and Mineral Analysis, 2022, 41(4): 632−641.
|
[29] |
陈静,孙琴,姚羽,等. DGT和传统化学法比较研究复合污染土壤中Cd的生物有效性[J]. 环境科学研究, 2014, 27(10): 1172−1179.
Chen J,Sun Q,Yao Y,et al. Comparison of DGT technique with traditional method for evaluating cadmium bioavailability in soils with combined pollution[J]. Research of Environmental Sciences, 2014, 27(10): 1172−1179.
|
[30] |
姚羽,孙琴,丁士明,等. 基于薄膜扩散梯度技术的复合污染土壤镉的生物有效性研究[J]. 农业环境科学学报, 2014, 33(7): 1279−1298.
Yao Y,Sun Q,Ding S M,et al. Diffusive gradients in thin films (DGT) technique for evaluation of cadmium bioavailability in heavy metal Co-polluted soils[J]. Journal of Agro-Environment Science, 2014, 33(7): 1279−1298.
|
[31] |
刘小莲,杜平,陈娟,等. 基于梯度扩散薄膜技术评估稻田土壤中镉的生物有效性[J]. 农业环境科学学报, 2017, 36(12): 2429−2437.
Liu X L,Du P,Chen J,et al. Evaluation of cadmium bioavailability via diffusive gradients in thin film technology for agricultural soils[J]. Journal of Agro-Environment Science, 2017, 36(12): 2429−2437.
|
[32] |
Davison W,Zhang H. Progress in understanding the use of diffusive gradients in thin films (DGT)-back to basics[J]. Environment Chemistry, 2012, 9(1): 1−13. doi: 10.1071/EN11084
|
[33] |
Tian Y,Wang X,Luo J,et al. Evaluation of holistic approaches to predicting the concentrations of metals in field cultivated rice[J]. Environmental Science & Technology, 2008, 42(20): 7649−7654.
|
[34] |
Menzies N W,Donn M J,Kopittke P M,et al. Evaluation of extractants for estimation of the phytoavailable trace metals in soils[J]. Environmental Pollution, 2007, 14(5): 121−130.
|
[35] |
周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 31(3): 319−336.
Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 31(3): 319−336.
|
[36] |
熊英,王亚平,韩张雄,等. 全国土壤污染状况详查重金属元素可提取态提取试剂的选择[J]. 岩矿测试, 2022, 41(3): 384−393.
Xiong Y,Wang Y P,Han Z X,et al. Screening of extractable reagents for heavy metal elements in the detailed survey of soil pollution in China[J]. Rock and Mineral Analysis, 2022, 41(3): 384−393.
|
[37] |
周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097−1106.
Zhou G H. Recent progress in the study of heavy metal bioavailability in soil[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1097−1106.
|
[38] |
戴高乐,侯青叶,杨忠芳,等. 洞庭湖平原土壤铅活动性影响因素研究[J]. 现代地质, 2019, 33(4): 783−793.
Dai G L,Hou Q Y,Yang Z F,et al. Factors affecting mobility of lead in the soils of the Dongting Lake Plain,China[J]. Geoscience, 2019, 33(4): 783−793.
|
[39] |
夏伟,吴冬妹,袁知洋. 土壤-农作物系统中重金属元素迁移转化规律研究——以湖北宣恩县为例[J]. 资源环境与工程, 2018, 32(4): 563−568.
Xia W,Wu D M,Yuan Z Y. Study on the migration and transformation law of heavy metals in soil-crop system[J]. Resources Environment & Engineering, 2018, 32(4): 563−568.
|
[40] |
邓帅, 段佳辉, 宁墨奂, 等. 典型黑色岩系地质高背景区土壤和农产品重金属富集特征与污染风险[J]. 环境科学, 2023, 44(4): 2234-2242.
Deng S, Duan J H, Ning M H, et al. Accumulation and pollution risks of heavy metals in soils and agricultural products from a typical black shale region with high geological background[J]. Environmental Science, 2023, 44(4): 2234-2242.
|
[41] |
马宏宏,彭敏,郭飞,等. 广西典型岩溶区农田土壤-作物系统Cd迁移富集影响因素[J]. 环境科学, 2021, 42(3): 1514−1522.
Ma H H,Peng M,Guo F,et al. Factors affecting the translocation and accumulation of cadmium in a soil-crop system in a typical karst area of Guangxi Province,China[J]. Environmental Science, 2021, 42(3): 1514−1522.
|
[42] |
Luo J,Zhang H,Santner J,et al. Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(Ⅴ),selenium(Ⅵ),vanadium(Ⅴ),and antimony(Ⅴ)[J]. Analytical Chemistry, 2010, 82(21): 8903−8909. doi: 10.1021/ac101676w
|
[43] |
Frohne T,Rinklebe J. Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany[J]. Water Air & Soil Pollution, 2013, 224(6): 1591.
|
[44] |
余贵芬,蒋新,孙磊,等. 有机物质对土壤镉有效性的影响研究综述[J]. 生态学报, 2002, 22(5): 770−776.
Yu G F,Jiang X,Sun L,et al. A review for effect of organic substances on the availability of cadmium in soils[J]. Acta Ecologica Sinica, 2002, 22(5): 770−776.
|