• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
WEI Lianjun,CHEN Yanqing,LEI Manqi,et al. Mineralogy Characteristics of Sedimentary Bauxite in Western Guangxi[J]. Rock and Mineral Analysis,2023,42(6):1220−1229. DOI: 10.15898/j.ykcs.202209200177
Citation: WEI Lianjun,CHEN Yanqing,LEI Manqi,et al. Mineralogy Characteristics of Sedimentary Bauxite in Western Guangxi[J]. Rock and Mineral Analysis,2023,42(6):1220−1229. DOI: 10.15898/j.ykcs.202209200177

Mineralogy Characteristics of Sedimentary Bauxite in Western Guangxi

More Information
  • Received Date: September 19, 2022
  • Revised Date: March 05, 2023
  • Accepted Date: June 27, 2023
  • Available Online: December 21, 2023
  • BACKGROUND

    China is the world’s largest aluminum producer and consumer. With the development of China’s aluminum industry, bauxite resources are consumed continuously and highly dependent on imports. In 2019, China’s imports exceeded 100 million tons of bauxite, with an increase of 21.9%, and in 2020, imports reached a record high of 110 million tons, and dependency on importing bauxite is increasing from 5% in 2001 to 50%. Therefore, high-sulfur bauxite becomes an important new resource. A large number of high-grade high sulfur sedimentary bauxite has been found in China. However, due to the high sulfur content (S>0.7%) in high sulfur sedimentary bauxite, which seriously affects the subsequent aluminum extraction process, it has not been used in industry. If it can be developed and utilized in industry, it is of great significance to the development of the aluminum industry.

    OBJECTIVES

    In order to clarify the ore properties and the possible industrialization technical indicators of sedimentary bauxite in Western Guangxi.

    METHODS

    X-ray fluorescence spectroscopy, polarizing microscope, X-ray diffraction and scanning electron microscopy were applied to investigate composition and properties of the sedimentary bauxite ore, which provided important reference data for the development of this type of bauxite.

    RESULTS

    (1) The content of Al2O3 in the ore is 64.21% and the content of S is 5.13%. According to the classification of the bauxite industrial index quality, the ore belongs to high sulfur deposit type bauxite. (2) The aluminum minerals in the ore are mainly diaspore and chlorite, with fine crystal size, oolitic aggregate form and smooth surface for diaspora. The main iron minerals are pyrite, hematite and limonite. The pyrite exists in the form of euhedral, semi-euhedral and allotriomorphic crystals, and the size of crystal particles is different. Some of the coarse-grained and medium-grained pyrites have a particle size of more than hundreds of microns. Compared with the accumulated bauxite in the same source layer, the biggest difference of sedimentary bauxite in Western Guangxi is that it contains an amount of pyrite. (3) Diaspore and pyrite are the main useful minerals of bauxite, there are differences in the distribution between the two minerals in the ore. The difference is conducive to the use of crushing and grinding methods to dissociate mineral monomers, and then select appropriate mineral processing methods to separate pyrite.

    CONCLUSIONS

    It is possible to dissociate the main minerals in the high sulfur sedimentary bauxite by crushing and grinding. Based on previous experiments on high-sulfur bauxite, the high-sulfur problem of the sedimentary bauxite can be effectively separated from pyrite by mineral processing. Monomer separation can be achieved by crushing and grinding, with removal of the pyrite by flotation by a mineral processing reagent system. Thus, the aluminum-containing minerals after floating sulfur meet the requirements of alumina extraction and feeding in the next step.

  • [1]
    张歆, 吴泽港, 刘风琴, 等. 高硫铝土矿脱硫技术研究现状与发展趋势[J]. 有色金属(冶炼部分), 2023(4): 20−27.

    Zhang X, Wu Z G, Liu F Q, et al. Research status and development trend of high-sulfur desulfurization technology[J]. Nonferrous Metals (Extractive Metallurgy), 2023(4): 20−27.
    [2]
    李林松, 金会心, 刘文纪, 等. 铝土矿资源状况及高硫铝土矿脱硫方法[J]. 广州化工, 2021, 49(17): 18−22.

    Li L S, Jin H X, Liu W J, et al. Status of high sulfur bauxite resource and desulfurization method[J]. Guangzhou Chemical Industry, 2021, 49(17): 18−22.
    [3]
    何润德, 胡四春, 黎志英, 等. 用高硫型铝土矿生产氧化铝过程中湿法除硫方法讨论[J]. 湿法冶金, 2004, 23(2): 66−68.

    He R D, Hu S C, Li Z Y, et al. Discussion on the method of hydrometallurgical desulfurization during producing alumina with high grade bauxite containing sulfur[J]. Hydrometallurgy of China, 2004, 23(2): 66−68.
    [4]
    宋翔宇. 从某高硫铝土矿中浮选分离硫铝试验研究[J]. 湿法冶金, 2012, 31(4): 243−247. doi: 10.13355/j.cnki.sfyj.2012.04.014

    Song X Y. Experimental study on separation of sulfur and aluminum minerals from high sulfur bauxite by flotation[J]. Hydrometallurgy of China, 2012, 31(4): 243−247. doi: 10.13355/j.cnki.sfyj.2012.04.014
    [5]
    卯松, 李先海, 张覃. 贵州某高硫铝土矿工艺矿物学研究[J]. 矿产保护与利用, 2022, 42(3): 146−150.

    Mao S, Li X H, Zhang Q. Study on process mineralogy of a high-sulfur bauxite ore in Guizhou[J]. Conservation and Utilization of Mineral, 2022, 42(3): 146−150.
    [6]
    惠博, 曾令熙, 刘飞燕. 重庆地区铝土矿工艺矿物学研究[J]. 中国矿业, 2012, 21(8): 70−73. doi: 10.3969/j.issn.1004-4051.2012.08.019

    Hui B, Zeng L X, Liu F Y. The bauxite processing mineralogy study in Chongqing[J]. China Mining Magazine, 2012, 21(8): 70−73. doi: 10.3969/j.issn.1004-4051.2012.08.019
    [7]
    孟祥仑, 尹本纯, 覃丰. 桂西地区沉积型铝土矿床成矿地质特征及找矿方案[J]. 冶金管理, 2019(5): 115−117.

    Meng X L, Yi B C, Qin F. Geological characteristics and prospecting scheme of sedimentary bauxite deposits in Western Guangxi[J]. China Steel Focus, 2019(5): 115−117.
    [8]
    孙莉, 肖克炎, 娄德波. 中国铝土矿资源潜力预测评价[J]. 地学前缘, 2018, 25(3): 82−94. doi: 10.13745/j.esf.2018.03.007

    Sun L, Xiao K Y, Lou D B. Predictions and evaluation of bauxite resource in China[J]. Earth Science Frontiers, 2018, 25(3): 82−94. doi: 10.13745/j.esf.2018.03.007
    [9]
    高兰, 王登红, 熊晓云, 等. 中国铝土矿资源特征及潜力分析[J]. 中国地质, 2015, 42(4): 853−863. doi: 10.3969/j.issn.1000-3657.2015.04.005

    Gao L, Wang D H, Xiong X Y, et al. Minerogenetic characteristics and resource potential analysis of bauxite in China[J]. Geology in China, 2015, 42(4): 853−863. doi: 10.3969/j.issn.1000-3657.2015.04.005
    [10]
    周杰强, 梅光军, 于明明, 等. 低品位高硫铝土矿反浮选同步脱硫硅试验[J]. 金属矿山, 2018(7): 123−126. doi: 10.19614/j.cnki.jsks.201807024

    Zhou J Q, Mei G J, Yu M M, et al. Research on synchronous desulfurization and desilication of low grade high-sulfur bauxite by reverse flotation[J]. Metal Mine, 2018(7): 123−126. doi: 10.19614/j.cnki.jsks.201807024
    [11]
    覃丰, 孟祥仑, 尹本纯. 桂西沉积型铝土矿分布特征及控矿条件分析[J]. 世界有色金属, 2019(5): 92-94.

    Qin F, Meng X L, Yi B C. Distribution characteristics and ore-controlling conditions of sedimentary bauxite deposits in Western Guangxi[J]. World Nonferrous Metals, 2019(5): 92-94.
    [12]
    王冠, 戴婕, 王坤阳, 等. 应用能谱-扫描电镜分析铜矿床伴生元素的赋存状态[J]. 岩矿测试, 2021, 40(5): 659−669.

    Wang G, Dai J, Wang K Y, et al. Occurrence of associated elements in a copper mine by EDX-SEM[J]. Rock and Mineral Analysis, 2021, 40(5): 659−669.
    [13]
    苗煦, 史淼, 王礼胜. 湖南临武黑色石英岩质玉矿物组成特征及成因初探[J]. 岩矿测试, 2021, 40(4): 522−531. doi: 10.15898/j.cnki.11-2131/td.202012030155

    Miao X, Shi M, Wang L S. Mineral composition and genesis of black quartzite jade from Linwu County, Hunan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 522−531. doi: 10.15898/j.cnki.11-2131/td.202012030155
    [14]
    张启燕, 史维鑫, 刘晓, 等. 高光谱扫描在碳酸盐岩矿物组成分析中的应用[J]. 岩矿测试, 2022, 41(5): 815−825.

    Zhang Q Y, Shi W X, Liu X, et al. Application of hyperspectral scanning in mineral composition analysis of carbonate rocks[J]. Rock and Mineral Analysis, 2022, 41(5): 815−825.
    [15]
    胡璇, 石磊, 张炜华. 碱熔融-电感耦合等离子体发射光谱法测定高硫铝土矿中的硫[J]. 岩矿测试, 2017, 36(2): 124−129.

    Hu X, Shi L, Zhang W H. Determination of sulfur in high-sulfur bauxite by alkali fusion-inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(2): 124−129.
    [16]
    张启连, 赵辛金, 李玉坤, 等. 桂西二叠系铝土矿地球化学特征与沉积模式[J]. 地质论评, 2020, 66(4): 1043−1058.

    Zhang Q L, Zhao X J, Li Y K, et al. Geochemical characteristics and sedimentary mode of Permian bauxite deposit in Western Guangxi[J]. Geologigal Review, 2020, 66(4): 1043−1058.
    [17]
    陈燕清, 蒋奇亮. 拜耳法处理广西不同地区铝土矿适用性研究[J]. 矿产保护与利用, 2018(2): 95−100.

    Chen Y Q, Jiang Q L. Research on the applicability of Bayer method for bauxite in different areas of Guangxi Province[J]. Conservation and Utilization of Mineral Resources, 2018(2): 95−100.
    [18]
    夏瑜, 罗星, 周卫宁, 等. 广西平果太平矿区外围铝土矿石工艺矿物学研究[J]. 岩石矿物学杂志, 2019, 38(4): 579-586.

    Xia Y, Luo X, Zhou W N, et al. A study of technological mineralogy of bauxite in the Taiping mining area, Pingguo County, Guangxi[J]. Acta Petrologica et Mineralogica, 2019, 38(4): 579-586.
    [19]
    夏楚林, 张起钻, 高莉. 桂西堆积型铝土矿矿物组成及地球化学特征探析[J]. 轻金属, 2011(5): 6−9.

    Xia C L, Zhang Q Z, Gao L. Analysis on mineral component and geochemistry of accumulated bauxite in Western Guangxi[J]. Light Metals, 2011(5): 6−9.
    [20]
    蔡书慧, 刘学飞, 孟健寅, 等. 桂西田阳堆积型铝土矿矿物学及地球化学[J]. 地质与勘探, 2012, 48(3): 460−470.

    Cai S H, Liu X F, Meng J Y, et al. Mineralogy and geochemistry of the Tianyang accumulation-type bauxite in Western Guangxi Province[J]. Geology and Exploration, 2012, 48(3): 460−470.
    [21]
    欧阳承新, 奚小双, 曹荆亚. 广西平果堆积型铝土矿成矿元素多重分形特征[J]. 地质科技情报, 2015, 34(5): 114−119.

    Ouyang C X, Xi X S, Cao J Y. Multifractal characteristics of metallogenic elements of Pingguo accumulated bauxite in Guangxi[J]. Geological Science and Technology Information, 2015, 34(5): 114−119.
    [22]
    张永康, 任少峰, 刘金海, 等. 贵州某低品位高硫铝土矿拜尔法溶出试验研究[J]. 矿产保护与利用, 2015(6): 35−39.

    Zhang Y K, Ren S F, Liu J H, et al. Tests on the Bayer dissolving method for the low-grade bauxite with high sulfur in Guizhou[J]. Conservation and Utilization of Mineral Resources, 2015(6): 35−39.
    [23]
    郭鑫, 魏培贺, 田应忠. 河南某地煤下高硫铝土矿深度脱硫试验研究[J]. 昆明理工大学学报(自然科学版), 2020, 45(2): 1−8.

    Guo X, Wei P H, Tian Y Z. An experimental study on deep desulfurization of high sulfur bauxite under coal in Henan Province[J]. Journal of Kunming University of Science and Technology (Natural Science), 2020, 45(2): 1−8.
    [24]
    金会心, 吴复忠, 李军旗, 等. 高硫铝土矿微波焙烧脱除黄铁矿硫[J]. 中南大学学报(自然科学版), 2020, 51(10): 2707−2717.

    Jin H X, Wu F Z, Li J Q, et al. Desulfurization of pyrite in high-sulfur bauxite with microwave roasting process[J]. Journal of Central South University (Science and Technology), 2020, 51(10): 2707−2717.
    [25]
    田应忠, 任朋, 郭鑫. 西南某地高硫铝土矿浮选脱硫试验研究[J]. 轻金属, 2021(12): 5−8.

    Tian Y Z, Ren P, Guo X. Experimental study on flotation desulfurization of high-sulfur bauxite in Southwest China[J]. Light Metals, 2021(12): 5−8.
    [26]
    吴国亮, 魏培贺. 中低品位铝土矿新型正浮选捕收剂的开发研究[J]. 有色金属(选矿部分), 2020(2): 115−118.

    Wu G L, Wei P H. Development and research of new positive flotation collector for medium and low-grade bauxite[J]. Nonferrous Metals (Mineral Processing Section), 2020(2): 115−118.
    [27]
    肖红艳, 徐晓晴, 王斐, 等. 新型捕收剂RA-92在低品位碳酸锰矿选矿中的应用[J]. 岩矿测试, 2016, 35(3): 284−289.

    Xiao H Y, Xu X Q, Wang F, et al. Application of novel collector dosage RA-92 in the flotation procedure of low-grade carbonate manganese ore[J]. Rock and Mineral Analysis, 2016, 35(3): 284−289.
    [28]
    马兴飞, 张强, 张姗姗. 低品位高硫铝土矿低温焙烧脱硫研究[J]. 有色金属(冶炼部分), 2021(6): 32−36.

    Ma X F, Zhang Q, Zhang S S. Study on desulfurization of low grade and high sulfur bauxite by low-temperature roasting[J]. Nonferrous Metals (Extractive Metallurgy), 2021(6): 32−36.
    [29]
    李振宇. 西北某高硫铝土矿浮选脱硫试验研究[J]. 矿产综合利用, 2020, 12(6): 127−130.

    Li Z Y. Study on flotation desulfurization of high-sulfur bauxite in Northwest[J]. Multipurpose Utilization of Mineral Resources, 2020, 12(6): 127−130.
    [30]
    高纯生, 邹春林, 陈黎军, 等. 高硫铝土矿重力分选脱硫试验研究[J]. 轻金属, 2020(1): 11−13.

    Gao C S, Zou C L, Chen L J, et al. Experimental study on desulfurization of high sulfur bauxite by gravity separation[J]. Light Metals, 2020(1): 11−13.
  • Cited by

    Periodical cited type(3)

    1. 赵平涛,李德强,李艳. 广西北海某地石英砂矿提取工艺研究. 矿产与地质. 2024(04): 713-719 .
    2. 袁秀伟,齐林,高贺. 浅析铁样表面氧化对X射线荧光光谱成分分析的影响. 中国检验检测. 2024(05): 97-100 .
    3. 雷满奇,陈燕清,刘杰,李德强. 广西平果地区高硫沉积型铝土矿矿物特征及脱硫方案研究. 矿冶工程. 2024(06): 60-65 .

    Other cited types(1)

Catalog

    Article views (111) PDF downloads (22) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return