• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
XU Zhichao,SUN Weilin,WANG Xiaofang,et al. Automatic Pretreatment Methods for Determination of Total Organic Carbon in Sedimentary Rocks[J]. Rock and Mineral Analysis,2023,42(6):1230−1239. DOI: 10.15898/j.ykcs.202208240157
Citation: XU Zhichao,SUN Weilin,WANG Xiaofang,et al. Automatic Pretreatment Methods for Determination of Total Organic Carbon in Sedimentary Rocks[J]. Rock and Mineral Analysis,2023,42(6):1230−1239. DOI: 10.15898/j.ykcs.202208240157

Automatic Pretreatment Methods for Determination of Total Organic Carbon in Sedimentary Rocks

More Information
  • Received Date: September 15, 2022
  • Revised Date: November 17, 2022
  • Accepted Date: June 06, 2023
  • Available Online: July 26, 2023
  • BACKGROUND

    Total organic carbon is the primary indicator to measure the abundance of organic matter in source rocks. It is of great practical significance to achieve the measurement of TOC accurately and efficiently. In the whole process of determination of TOC, a manual pretreatment method was usually used to remove the inorganic carbon with hydrochloric acid, which has become the primary factor restricting the overall testing efficiency because of its long pretreatment cycles and chloride residues. The effects of parameters such as dissolution time had been studied, however, the systematic pretreatment methods had not yet been developed and the efficiency of pretreatment had not been substantially improved.

    OBJECTIVES

    To improve the effect and efficiency of sample preparation for TOC test.

    METHODS

    (1) To establish automatic pretreatment methods, a set of parameters were established. Dosage, rate, and interval of liquid addition were introduced to ensure stable operation, while reaction period and the activity of chloride ion were introduced to control the direction of the program automatically. (2) According to the pretreatment process specified in GB/T 19145—2022, the two pretreatment methods were validated using national reference materials and quality control samples with various lithologies and TOC levels. (3) Further comparison of two automatic pretreatment methods and a traditional manual method were conducted. Then, the activity of chloride ion was suggested to be a quantitative monitoring indicator for the end point of rinsing samples.

    RESULTS

    (1) The established automatic pretreatment methods were verified to be reliable and effective. The test data showed that the overall recovery of the two automatic pretreatment methods was 96.23%-102.12%, and the relative standard deviation was 0.37%-3.23%. Both of the automatic pretreatment methods met the quality control requirements of data accuracy, repeatability and reproducibility. (2) The automatic pretreatment period was significantly reduced to 4-6h per batch compared with 22-36h of the manual method. This could be attributed to two factors, one was the shortened single rinsing cycle because of the local negative pressure around each crucible, the other was the faster approach to the target value for both pH and a(Cl) in automatic pretreatment methods (Fig.4). (3) The activity of chloride ion a(Cl) was introduced to be a quantitative monitoring indicator for the end point of rinsing samples, since it was not only more sensitive to changes in rinsed times than pH, but also better at monitoring the content of soluble chloride in samples and reducing the negative impact of residual chloride effectively.

    CONCLUSIONS

    The two established automatic pretreatment methods could be replaced from the manual method for sample preparation in TOC test owning to better data quality and higher test efficiency. The activity of chloride ion was suggested to be a quantitative monitoring indicator for the end point of rinsing samples.

  • [1]
    Peters K E. Guidelines for evaluating petroleum source rock using programmed pyrolysis[J]. Geochemistry Treatise of Petroleum Geology Reprint, 1988, 7(3): 392−404.
    [2]
    陈建平,梁狄刚,张水昌,等. 中国古生界海相烃源岩生烃潜力评价标准与方法[J]. 地质学报, 2012, 86(7): 1132−1142.

    Chen J P,Liang D G,Zhang S C,et al. Evaluation criterion and methods of the hydrocarbon generation potential for China’s Paleozoic marine source rocks[J]. Acta Geologica Sinica, 2012, 86(7): 1132−1142.
    [3]
    曹茜,王兴志,戚明辉,等. 页岩油地质评价实验测试技术研究进展[J]. 岩矿测试, 2020, 39(3): 337−349. doi: 10.15898/j.cnki.11-2131/td.202001060005

    Cao Q,Wang X Z,Qi M H,et al. Research progress on experimental technologies of shale oil geological evaluation[J]. Rock and Mineral Analysis, 2020, 39(3): 337−349. doi: 10.15898/j.cnki.11-2131/td.202001060005
    [4]
    宋振响,徐旭辉,王保华,等. 页岩气资源评价方法研究进展与发展方向[J]. 石油与天然气地质, 2020, 41(5): 1038−1047. doi: 10.11743/ogg20200514

    Song Z X,Xu X H,Wang B H,et al. Advances in shale gas resource assessment methods and their future evolvement[J]. Oil & Gas Geology, 2020, 41(5): 1038−1047. doi: 10.11743/ogg20200514
    [5]
    贾建亮,刘招君,孟庆涛,等. 中国陆相油页岩含油率与总有机碳的响应机理[J]. 吉林大学学报(地球科学版), 2020, 50(2): 368−377.

    Jia J L,Liu Z J,Meng Q T,et al. Response mechanism between oil yield and total organic carbon of non-marine oil shale in China[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 368−377.
    [6]
    葛勋,郭彤楼,马永生,等. 四川盆地东南缘林滩场地区上奥陶统五峰组—龙马溪组页岩气储层甜点预测[J]. 石油与天然气地质, 2022, 43(3): 633−647. doi: 10.11743/ogg20220312

    Ge X,Guo T L,Ma Y S,et al. Prediction of shale reservoir sweet spots of the upper Ordovician Wufeng—Longmaxi Formations in Lintanchang area,southeastern margin of Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(3): 633−647. doi: 10.11743/ogg20220312
    [7]
    胡凯. 川西南威远地区五峰—龙马溪组页岩储层特征及甜点分布规律研究[J]. 非常规油气, 2021, 8(5): 34−44.

    Hu K. Reservoir and sweet spot distribution characteristics of shale gas in Wufeng—Longmaxi Formation,southwest of Sichuan Basin[J]. Unconventional Oil & Gas, 2021, 8(5): 34−44.
    [8]
    刘贝. 泥页岩中有机质: 类型、热演化与有机孔隙[J/OL]. 地球科学 [2022-04-05]. https: //kns.cnki.net/kcms/detail/42.1874.P.20220414.0922.010.html.

    Liu B. Organic matter in shales: Types, thermal evolution, and organic pores[J/OL]. Earth Science [2022-04-05]. http: //kns.cnki.net/kcms/detail/42.1874.P.20220414.0922.010.html.
    [9]
    陈维堃,腾格尔,张春贺,等. 页岩纳米有机孔结构表征技术研究进展[J]. 岩矿测试, 2022, 41(6): 906−919. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206004

    Chen W K,Tenger,Zhang C H,et al. Research progress on characterization technology of nano organic pore structure in shale[J]. Rock and Mineral Analysis, 2022, 41(6): 906−919. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206004
    [10]
    帅琴,黄瑞成,高强,等. 页岩气实验测试技术现状与研究进展[J]. 岩矿测试, 2012, 31(6): 931−938. doi: 10.3969/j.issn.0254-5357.2012.06.003

    Shuai Q,Huang R C,Gao Q,et al. Research development of analytical techniques for shale gas[J]. Rock and Mineral Analysis, 2012, 31(6): 931−938. doi: 10.3969/j.issn.0254-5357.2012.06.003
    [11]
    丁安徐,李小越,蔡潇,等. 页岩气地质评价实验测试技术研究进展[J]. 天然气与石油, 2014, 32(2): 43−48.

    Ding A X,Li X Y,Cai X,et al. Research progress of shale gas geological evaluation test technology[J]. Natural Gas and Oil, 2014, 32(2): 43−48.
    [12]
    代海,马铃,周智勇,等. 湿法氧化-非分散红外吸收测定水中总有机碳[J]. 广州化工, 2016, 44(23): 102−103. doi: 10.3969/j.issn.1001-9677.2016.23.037

    Dai H,Ma L,Zhou Z Y,et al. Determination of total organic carbon in water by wet oxidation and non-dispersive infrared absorption[J]. Guangzhou Chemical Industry, 2016, 44(23): 102−103. doi: 10.3969/j.issn.1001-9677.2016.23.037
    [13]
    唐伟祥,孟凡乔,张煜,等. 不同土壤有机碳测定方法的比较[J]. 土壤, 2018, 50(3): 6.

    Tang W X,Meng F Q,Zhang Y,et al. Method comparison for determining soil organic carbon[J]. Soils, 2018, 50(3): 6.
    [14]
    林春茹. 两种测定海洋沉积物中总有机碳方法对比探究[J]. 四川水泥, 2020(1): 129. doi: 10.3969/j.issn.1007-6344.2020.01.114

    Lin C R. Comparative study on two methods for determination of total organic carbon in marine sediments[J]. Sichuan Cement, 2020(1): 129. doi: 10.3969/j.issn.1007-6344.2020.01.114
    [15]
    邱灵佳,黄国林,苏玉,等. 总有机碳测定方法研究进展[J]. 广东化工, 2015, 42(9): 107−108. doi: 10.3969/j.issn.1007-1865.2015.09.050

    Qiu L J,Huang G L,Su Y,et al. An overview on current measurement methods of total organic carbon[J]. Guangdong Chemical Industry, 2015, 42(9): 107−108. doi: 10.3969/j.issn.1007-1865.2015.09.050
    [16]
    齐东子. 总有机碳含量测定方法分析[J]. 科技创新与应用, 2016(28): 185.

    Qi D Z. Analysis of determination method of total organic carbon content[J]. Technology Innovation and Application, 2016(28): 185.
    [17]
    Hazra B,Dutta S,Kumar S. TOC calculation of organic matter rich sediments using Rock-Eval pyrolysis:Critical consideration and insights[J]. International Journal of Coal Geology, 2017, 169: 106−115. doi: 10.1016/j.coal.2016.11.012
    [18]
    Behar F,Beaumont V,Penteado H. Rock-eval 6 technology:Performances and developments[J]. Oil and Gas Science and Technology, 2001, 56(2): 111−134. doi: 10.2516/ogst:2001013
    [19]
    李小辉,孙慧莹,刘春霞. 岩石热解法测定页岩中有机碳[J]. 当代化工, 2017, 46(3): 429−431. doi: 10.3969/j.issn.1671-0460.2017.03.015

    Li X H,Sun H Y,Liu C X. Application of rock pyrolysis method in measuring organic carbon in shale[J]. Contemporary Chemical Industry, 2017, 46(3): 429−431. doi: 10.3969/j.issn.1671-0460.2017.03.015
    [20]
    何海龙,君珊,张学宽. 总有机碳(TOC)分析仪测定土壤中TOC的研究[J]. 分析仪器, 2014(5): 59−61. doi: 10.3969/j.issn.1001-232x.2014.05.012

    He H L,Jun S,Zhang X K. Analysis of total organic carbon in soil by TOC analyzer[J]. Analytical Instrumentation, 2014(5): 59−61. doi: 10.3969/j.issn.1001-232x.2014.05.012
    [21]
    杨海燕. TOC-L总有机碳分析仪测定总有机碳的实验方法探究[J]. 全面腐蚀控制, 2021, 35(10): 34−38. doi: 10.13726/j.cnki.11-2706/tq.2021.10.034.05

    Yang H Y. Study on the experimental method for determination of total organic carbon by TOC-L total organic carbon analyzer[J]. Total Corrosion Control, 2021, 35(10): 34−38. doi: 10.13726/j.cnki.11-2706/tq.2021.10.034.05
    [22]
    罗彦莉,郭蕊,张大亮,等. 总有机碳测定仪在农业检测中的应用研究[J]. 化肥工业, 2019, 46(6): 27−29. doi: 10.3969/j.issn.1006-7779.2019.06.008

    Luo Y L,Guo R,Zhang D L,et al. Application research of total organic carbon analyzer in agricultural testing[J]. Chemical Fertilizer Industry, 2019, 46(6): 27−29. doi: 10.3969/j.issn.1006-7779.2019.06.008
    [23]
    高少鹏,徐柏青,王君波,等. 总有机碳分析仪准确测定湖泊沉积物中的TOC[J]. 分析试验室, 2019, 38(4): 413−416. doi: 10.13595/j.cnki.issn1000-0720.2018.072501

    Gao S P,Xu B Q,Wang J B,et al. Measuring total organic carbon precisely in lake sediment in Tibetan Plateau by TOC analyzer[J]. Chinese Journal of Analysis Laboratory, 2019, 38(4): 413−416. doi: 10.13595/j.cnki.issn1000-0720.2018.072501
    [24]
    韩万兵. 总有机碳分析仪测定土壤中的有机碳[J]. 煤炭与化工, 2017, 40(9): 72−74. doi: 10.19286/j.cnki.cci.2017.09.020

    Han W B. Determination of organic carbon in soil by total organic carbon analyzer[J]. Coal and Chemical Industry, 2017, 40(9): 72−74. doi: 10.19286/j.cnki.cci.2017.09.020
    [25]
    王贺. 沉积岩总有机碳样品处理中溶样时间对分析结果的影响探讨[J]. 石油化工应用, 2015, 34(10): 87−92. doi: 10.3969/j.issn.1673-5285.2015.10.021

    Wang H. The influence of sample dissolution time in total organic carbon analysis results of the sedimentary rocks[J]. Petrochemical Industry Application, 2015, 34(10): 87−92. doi: 10.3969/j.issn.1673-5285.2015.10.021
    [26]
    耿海燕,王明芳,韩文娟,等. 红外碳硫仪测定烃源岩中总有机碳[J]. 广东化工, 2019, 46(8): 188−190. doi: 10.3969/j.issn.1007-1865.2019.08.081

    Geng H Y,Wang M F,Han W J,et al. Determination of total organic carbon in source rocks by infrared carbon and sulfur meter[J]. Guangdong Chemical Industry, 2019, 46(8): 188−190. doi: 10.3969/j.issn.1007-1865.2019.08.081
    [27]
    喻涛,李春园. 盐酸、温度、时间及粒径对海洋沉积物碳酸盐去除的影响[J]. 热带海洋学报, 2006, 25(6): 33−38.

    Yu T,Li C Y. Effects of hydrochloric acid,temperature,time and grain size on carbonate removal from marine sediments in Northern South China Sea[J]. Journal of Tropical Oceanography, 2006, 25(6): 33−38.
    [28]
    李剑,孙友宝,马晓玲,等. 离子色谱(IC)前处理法测定土壤中的总有机碳含量[J]. 环境化学, 2014, 33(8): 1425−1426.

    Li J,Sun Y B,Ma X L,et al. Determination of total organic carbon in soil by ion chromatography (IC) pretreatment[J]. Environmental Chemistry, 2014, 33(8): 1425−1426.
    [29]
    周平,徐国盛,崔恒远,等. 沉积岩中总有机碳测定前的预处理方法[J]. 实验室研究与探索, 2019, 38(1): 45−48.

    Zhou P,Xu G S,Cui H Y,et al. Study on pretreatment method of total organic carbon before determination in sedimentary rock[J]. Research and Exploration in Laboratory, 2019, 38(1): 45−48.
    [30]
    顾涛,王迪民,杨梅,等. 高频红外碳硫仪测定土壤/沉积物中总有机碳研究[J]. 华南地质与矿产, 2015, 31(3): 306−310.

    Gu T,Wang D M,Yang M,et al. Determination of total organic carbon in soil and sediment by high frequency infrared carbon sulfur analyzer[J]. Geology and Mineral Resources of South China, 2015, 31(3): 306−310.
    [31]
    沈斌, 许智超, 王晓芳, 等. 用于岩石总有机碳测试的预处理系统[P]. 201922452256.7[2020-09-22].

    Shen B, Xu Z C, Wang X F, et al. Pretreatment system for determination of total organic carbon in rock[P]. 201922452256.7[2020-09-22].
    [32]
    杨佳佳,孙玮琳,徐学敏,等. 高演化烃源岩岩石热解和总有机碳标准物质研制[J]. 地质学报, 2020, 94(11): 3515−3522. doi: 10.19762/j.cnki.dizhixuebao.2020188

    Yang J J,Sun W L,Xu X M,et al. Preparation of certified reference materials for rock-eval and total organic carbon of postmature source rock[J]. Acta Geologica Sinica, 2020, 94(11): 3515−3522. doi: 10.19762/j.cnki.dizhixuebao.2020188
  • Related Articles

    [1]YANG Zongcai, XU Xuemin, YANG Jiajia, SHEN Bin, YUAN Kun, ZHANG Xiaotao, XU Zhichao, ZHAI Jia. A Pre-Treatment Method for the Determination of Organic Carbon Isotope Composition in Sedimentary Rocks[J]. Rock and Mineral Analysis, 2024, 43(6): 847-857. DOI: 10.15898/j.ykcs.202403110038
    [2]LIU Xiao, ZHANG Qiyan, SHI Weixin, GE Tianzhu, SONG Liqiang. Mineralogical Characteristics of Carbonate Rocks of the Upper Triassic Bolila Formation in the Eastern Part of the North Qiangtang Basin[J]. Rock and Mineral Analysis, 2024, 43(3): 440-448. DOI: 10.15898/j.ykcs.202212010227
    [3]WEI Lianjun, CHEN Yanqing, LEI Manqi, HUANG Qingqi. Mineralogy Characteristics of Sedimentary Bauxite in Western Guangxi[J]. Rock and Mineral Analysis, 2023, 42(6): 1220-1229. DOI: 10.15898/j.ykcs.202209200177
    [4]Feng YU, Deng-hong WANG, Yang YU, Zhu LIU, Juan-qin GAO, Jia-ai ZHONG, Yan QIN. The Distribution and Exploration Status of Domestic and Foreign Sedimentary-type Lithium Deposits[J]. Rock and Mineral Analysis, 2019, 38(3): 354-364. DOI: 10.15898/j.cnki.11-2131/td.201901180013
    [5]Kai-bo DUAN, Deng-hong WANG, Han-jiang HE, Guo-dong ZHENG, Xian-xiao XIONG, Jian-guo YUAN, Bao-bao HE, Yun-yan QU. Study on Geochemical Characteristics of Rare Earth Elements of Xinhua Phosphate Rocks in the Upper Yangtze, South China by ICP-MS/AES and Its Sedimentology Implications[J]. Rock and Mineral Analysis, 2015, 34(2): 261-267. DOI: 10.15898/j.cnki.11-2131/td.2015.02.018
    [6]Qi LIU, Ai-lin ZHAO, Gang XIAO, Mingxin YUE. The Occurrence Characteristics of Nickel and Molybdenum in Sedimentary Exhalative Polymetallic Deposit[J]. Rock and Mineral Analysis, 2013, 32(1): 70-77.
    [7]Simultaneous Determination of 15 Elements in Sedimentary Rock Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry[J]. Rock and Mineral Analysis, 2007, 26(3): 230-232.
    [8]Study on the K-Ar Dating of Diagenetic Illite in Sedimentary Rock Samples——Question and Discussion[J]. Rock and Mineral Analysis, 2007, 26(2): 117-120.
    [9]An Improved Method for Separation of Authigenic Clay Minerals from Sedimentary Rocks[J]. Rock and Mineral Analysis, 2001, (3): 214-216.
    [10]A Method for Separation of Calcite and Dolomite in Loess and Sedimentary Rocks[J]. Rock and Mineral Analysis, 2000, (4): 264-267.
  • Other Related Supplements

  • Cited by

    Periodical cited type(2)

    1. 李朝英,郑路,郑之卓,李华,王亚南,明安刚. 自动滴定仪测定土壤有机碳及其组分的方法优化. 岩矿测试. 2024(04): 632-640 . 本站查看
    2. 李文忠,李芳,任慧玲,何娟. 红外碳硫仪测定固体废物中有机质含量. 云南冶金. 2024(04): 133-136 .

    Other cited types(0)

Catalog

    Article views (151) PDF downloads (31) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return