• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LI Xinwei, LI Chao, ZHOU Limin, ZHAO Hong, QU Wenjun. A Review of Research Progress on Re-Os Isotopic System of Carbon-enriched Geological Samples[J]. Rock and Mineral Analysis, 2023, 42(2): 221-238. DOI: 10.15898/j.ykcs.202207200135
Citation: LI Xinwei, LI Chao, ZHOU Limin, ZHAO Hong, QU Wenjun. A Review of Research Progress on Re-Os Isotopic System of Carbon-enriched Geological Samples[J]. Rock and Mineral Analysis, 2023, 42(2): 221-238. DOI: 10.15898/j.ykcs.202207200135

A Review of Research Progress on Re-Os Isotopic System of Carbon-enriched Geological Samples

More Information
  • Received Date: July 19, 2022
  • Revised Date: August 18, 2022
  • Accepted Date: November 01, 2022
  • Available Online: March 30, 2023
  • HIGHLIGHTS
    (1) The accuracy of Re-Os isotope data has an important influence on the interpretation of chemical behavior and isochron ages geological significance of carbon-enriched geological samples.
    (2) Appropriate sampling method, Re-Os analysis method and geological reference materials can improve the accuracy of carbon-enriched geological samples' Re-Os isotope data.
    (3) Enriching and improving Re-Os analysis methods, databases and reference materials of carbon-enriched geological samples provide important support for the study of Re-Os occurrence mechanism in carbon-enriched geological samples and wide application of Re-Os isotope dating technology.
    Re and Os are relatively enriched in organic-enriched sedimentary rocks under an anoxic environment due to their organophilic property, and the seawater Os isotopic composition is recorded during the deposition of sedimentary rocks. Under certain geological conditions, the Re and Os in organic-enriched sedimentary rocks will transfer to oil-gas reservoir samples through the process of hydrocarbon generation. The enrichment mechanism of Re and Os in these carbon-enriched geological samples, such as organic-enriched sedimentary rocks, low-metamorphic sedimentary rocks, lacustrine sediments, coal, and oil-gas reservoir samples is the basis of wide geological applications. Re-Os isotopic system of organic-enriched sedimentary rocks has been applied to directly date deposition ages or stratigraphic boundary ages or oil-gas reservoirs, has been used to provide the occurrence time and explore the mechanism of major geological events, reconstructing paleo-environment, and deducing the evolution of petroleum, which has resulted in many achievements.The accumulation mechanism of Re and Os in organic-enriched sedimentary rocks plays an important role in understanding the geological significance of Re-Os isotopic data obtained from organic-enriched sedimentary rocks. In anoxic seawater, Re and Os are reduced to lower valence states of Re(Ⅳ) and Os(Ⅲ), respectively, and then Re and Os enter into organic-rich sedimentary rocks by combining with organic matter. Re and Os are enriched and fractionated during this process, enabling the Re-Os isotope system of organic-enriched sedimentary rocks to directly determine stratigraphic boundaries and sedimentary ages. The Re-Os isotope system has successfully provided accurate stratigraphic boundary ages of Devonian—Carboniferous, Cambrian—Ordovician, Ordovician—Silurian, Permian—Triassic, middle-upper Triassic, and Jurassic—Cretaceous. Furthermore, the Re-Os isotopic system has unique advantages for the strata lacking biological fossils or volcanic interlayers, which have provided the sedimentary age of the Niutitang Formation black shale in Guizhou province and Doushantuo Formation in South China. During the process of hydrogenous source Os into organic-enriched sedimentary rocks, the relative flux of Os from continental weathering, hydrothermal and cosmic dust was recorded, which was reflected as the initial Os isotopic ratio of sedimentary rocks. The coupling relationship between the variation of Os isotopic ratios, atmospheric oxygen level, crustal weathering degree, glaciation events, meteorite impact events, and Large Igneous Provinces can provide the occurrence time and explore the mechanism of major geological events in the history of the earth. The paleoseawater environment and paleoclimate during sedimentation can be further reduced in multiple dimensions by means of the coordinated variation between Re-Os isotopic data, organic matter accumulation, enrichment degree of redox-sensitive elements, and other geochemical proxies.The behavior of Re and Os in the oil-gas system has always been the focus and difficulty in the research of oil-gas reservoir chronology, which is an important basis for understanding the geological significance and wide application of oil-gas reservoir-related samples. The chemical behavior of Re-Os varies in different stages of hydrocarbon formation and evolution. It has been found that the Re-Os isotope system of source rocks will not be destroyed during the process of hydrocarbon generation, and Re/Os fractionation and redistribution of Re and Os will occur during the process of hydrocarbon expulsion and migration. During the process of deasphaltizing, biodegradation, thermal alteration, thermal cracking and oil-water reaction, the asphaltene in crude oil will change correspondingly, and Re and Os in crude will migrate and fractionate accordingly, which will affect the closure of Re-Os isotope system, and even reset the Re-Os isotope system in crude. The different chemical behaviors of Re and Os in the process of hydrocarbon formation and evolution determine the geological significance of Re-Os isochrones obtained from oil-gas samples.Despite the Re-Os isotope system obtaining many achievements and advances in the application of carbon-enriched geological samples, there are still many crucial problems that need to be solved, which restrict the wide application of the Re-Os isotope system. Through statistical analysis of the Re-Os data (including Re and Os contents, ages and initial Os uncertainty) of carbon-enriched geological samples from different sedimentary ages, it is found that the Re and Os contents of organic-enriched sedimentary rocks are at the level of 10-9-10-12g/g, and the error of the Re-Os isochron age and initial Os isotopic ratio of many samples exceeds 10%, especially the larger error of initial Os data. In the process of Re-Os isotope analysis, the accuracy of initial Os isotopic ratio data will not only be affected by sample content, procedural blank of chemical treatment method, error propagation and amplification during calculation, but also by geological factors in the process of sampling. The accuracy of the Re-Os data of carbon-enriched geological samples restricts the accurate identification of the paleoenvironment, the occurrence time of major geological events, the true source of seawater Os, and the degree of geological process by using the initial Os isotopic ratio and the Re-Os isochron age of organic-enriched sedimentary rocks. Moreover, the error of Re-Os isotopic data in the oil-gas system is larger than that that in the organic rich sedimentary rocks. Studies on Re-Os chemical analysis methods and sampling methods for different types of oil-gas samples are still insufficient, and the fractionation mechanism of Re-Os in the process of hydrocarbon formation and evolution is still unclear. This hinders the further understanding of the chemical behavior of Re and Os, and the geological significance of Re-Os isochron ages during oil-gas evolution. In addition, the lacustrine sediments and coal have more complex material sources, geological processes, and the impact of terrigenous detrital during the formation process that is difficult to obtain effective sedimentary ages by Re-Os isotope dating at present.On the basis of existing Re-Os isotope analysis techniques, improving the Re-Os data quality as much as possible is the key to studying the Re-Os enrichment mechanism of carbon-enriched geological samples, especially exploring the chemical behavior of Re and Os and geological significance of the Re-Os isochron age of the oil-gas system. There are four aspects that can improve the accuracy of Re-Os isotopic data of carbon-enriched geological samples.(1) Sampling methods: In addition to collecting fresh and unweathered organic-carbon geological samples, the deposition rate can be a reference as a sampling interval. This can guarantee the samples have relatively uniform initial Os isotopic value and a wide range of the Re-Os isotopic ratios and can improve the accuracy of the Re-Os isochron and initial Os values. Through different pretreatment, such as mixing for a long time, or extracting with organic reagents improvements to the homogeneity of oil-gas samples and the quality of Re-Os data can be made.(2) Dissolution methods: Except for the traditional H2SO4-CrO3 and reverse aqua regia method, researchers established two dissolution methods which were HNO3-H2O2 and H2SO4-Na2CrO4 to solve the problem of high Re blank of the traditional H2SO4-CrO3 method and improve the accuracy of Re-Os data. As the principle of choosing a suitable dissolution method, the Re and Os content of the samples especially the Os content should be considered first and the method with lower procedural blank should be selected.(3) Enrichment methods: Previous studies presumed that the 185Re/187Re data obtained by acetone-NaOH extraction method and anion resin exchange method were consistent. However, recent studies have confirmed that different enrichment methods can produce Re fractionation. The acetone-NaOH extraction method can obtain more consistent results than anion resin exchange method during Re enrichment. The acetone-NaOH extraction method is recommended for samples with Re content less than 1ng/g and for oil-gas samples.(4) Selection of reference materials: Matrix matched reference materials are very important in monitoring the process, data quality and method accuracy of Re-Os isotope analysis. At present, the main reference materials used are shale and oil shale standard samples (SBC-1, SCo-2 and SGR-1b) of the United States Geological Survey (USGS) and crude standard samples (NIST RM8505) of National Institute of Standards and Technology (NIST). There are also calcareous organic-enriched shales from the USGS and sedimentary rock samples from the Japan Geological Survey. According to the summarized Re-Os data obtained by different dissolution methods, SBC-1, SGR-1b and SCo-2 have relatively uniform Re/Os content and isotope ratio on the whole, which can be used for Re-Os data monitoring of shale and oil shale, respectively. The Re-Os data of calcareous organic-enriched shale standard samples have been reported recently and show good uniformity which have great potential in monitoring Re-Os data. NISTRM8505 has relatively uniform Re-Os isotope ratio and may be more suitable for isotope ratio monitoring.In conclusion, the Re-Os isotope system of carbon-enriched geological samples provides much key information for the determination of sedimentary age, paleomarine environment evolution, occurrence time of major geological events, and oil-gas evolution, which is significant for understanding Earth's history. It is important to improve the accuracy of Re-Os isotope data of carbon-enriched geological samples by different methods to better understand chemical behavior of Re and Os and the geological significance of Re-Os isochron age. Enriching and improving Re-Os analysis methods, databases and reference materials of carbon-enriched geological samples will provide important support for the study of Re-Os enrichment mechanism of carbon-enriched geological samples and its wide application

  • [1]
    Cohen A S, Coe A L, Bartlett J M, et al. Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater[J]. Earth and Planetary Science Letters, 1999, 20-28(3-4): 159-173.
    [2]
    Yamashita Y, Takahashi Y, Haba H, et al. Comparison of reductive accumulation of Re and Os in seawater-sediment systems[J]. Geochimica et Cosmochimica Acta, 2007, 71(14): 3458-3475. doi: 10.1016/j.gca.2007.05.003
    [3]
    Ravizza G, Turekian K K, Hay B J. The geochemistry of rhenium and osmium in recent sediments from the Black Sea[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3741-3752. doi: 10.1016/0016-7037(91)90072-D
    [4]
    Crusius J, Calvert S, Pedersen T, et al. Rhenium and mo-lybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145: 65-78. doi: 10.1016/S0012-821X(96)00204-X
    [5]
    Selby D, Creaser R A. Re-Os geochronology of organic rich sediments: An evaluation of organic matter analysis methods[J]. Chemical Geology, 2003, 200: 225-240. doi: 10.1016/S0009-2541(03)00199-2
    [6]
    Creaser R A, Sannigrahi P, Chacko T, et al. Further eva-luation of the Re-Os geochronometer in organic-rich sedimentary rocks: A test of hydrocarbon maturation effects in the Exshaw Formation, western Canada Sedimentary Basin[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3441-3452. doi: 10.1016/S0016-7037(02)00939-0
    [7]
    Cumming V M, Selby D, Lillis P G, et al. Re-Os geo-chronology and Os isotope fingerprinting of petroleum sourced from a type Ⅰ lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrouspyrolysis experiments[J]. Geochimica et Cosmochimica Acta, 2014, 138: 32-56. doi: 10.1016/j.gca.2014.04.016
    [8]
    Rooney A D, Selby D, Lewan M D, et al. Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments[J]. Geochimica et Cosmochimica Acta, 2012, 77: 275-291. doi: 10.1016/j.gca.2011.11.006
    [9]
    Li S J, Wang X C, Wilde S A. Revisiting rhenium-osmium isotopic investigations of petroleum systems: From geochemical behaviours to geological interpretations[J]. Journal of Earth Science, 2021, 32(5): 1226-1249. doi: 10.1007/s12583-020-1066-7
    [10]
    Selby D, Creaser R A. Direct radiometric dating of the Devonian-Mississippian time-scale boundary using the Re-Os black shale geochronometer[J]. Geology, 2005, 33(7): 545-548. doi: 10.1130/G21324.1
    [11]
    Kendall B S, Creaser R A, Selby D. Re-Os geochro-nology of postglacial black shales in Australia: Constraints on the timing of "Sturtian" glaciation[J]. Geology, 2006, 34(9): 729-732. doi: 10.1130/G22775.1
    [12]
    Turgeon S C, Creaser R A, Algeo T J. Re-Os depositional ages and seawater Os estimates for the Frasnian—Famennian boundary: Implications for weathering rates, land plant evolution, and extinction mechanisms[J]. Earth and Planetary Science Letters, 2007, 261: 649-661. doi: 10.1016/j.epsl.2007.07.031
    [13]
    Kendall B S, Creaser R A, Gordon G W, et al. Re-Os and Mo isotope systematics of black shales from the middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73: 2534-2558. doi: 10.1016/j.gca.2009.02.013
    [14]
    Zhu B, Becker H, Jiang S Y, et al. Re-Os geochronology of black shales from the Neoproterozoic Doushantuo Formation, Yangtze platform, South China[J]. Precambrian Research, 2013, 225: 67-76. doi: 10.1016/j.precamres.2012.02.002
    [15]
    Tripathy G R, Hannah J L, Stein H J, et al. Re-Os age and depositional environment for black shales from the Cambrian—Ordovician boundary, Green point, western Newfoundland[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1021-1037. doi: 10.1002/2013GC005217
    [16]
    Xu G P, Hannah J L, Stein H J, et al. Cause of upper Triassic climate crisis revealed by Re-Os geochemistry of Boreal black shales[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395: 222-232. doi: 10.1016/j.palaeo.2013.12.027
    [17]
    Tripathy G R, Hannah J L, Stein H J. Refining the Ju-rassic—Cretaceous boundary: Re-Os geochronology and depositional environment of upper Jurassic shales from the Norwegian Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 503: 13-25. doi: 10.1016/j.palaeo.2018.05.005
    [18]
    Ravizza G, Turekain K K. Application of the 187Re-187Os system to black shale geochronometry[J]. Geochimica et Cosmochimica Acta, 1989, 53(12): 3257-3262. doi: 10.1016/0016-7037(89)90105-1
    [19]
    Lu X Z, Kendall B, Stein H J, et al. Temporal record of osmium concentrations and 187Os/188Os in organic-rich mudrocks: Implications for the osmium geochemical cycle and the use of osmium as a paleoceanographic tracer[J]. Geochimica et Cosmochimica Acta, 2017, 216: 221-241. doi: 10.1016/j.gca.2017.06.046
    [20]
    李欣尉, 李超, 周利敏, 等. 贵州正安县奥陶系—志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演[J]. 岩矿测试, 2020, 39(2): 251-261. doi: 10.15898/j.cnki.11-2131/td.201907310116

    Li X W, Li C, Zhou L M, et al. Accurate determination of the age of the carbonaceous mudstone of the Ordovician—Silurian boundary in Zheng'an County, Guizhou Province by Re-Os isotope dating method and its application in paleoenvironmental inversion[J]. Rock and Mineral Analysis, 2020, 39(2): 251-261. doi: 10.15898/j.cnki.11-2131/td.201907310116
    [21]
    Liu Y, Bagas L, Nie F, et al. Re-Os system of black schist from the Mesoproterozoic Bayan Obo Group, central Inner Mongolia, China and its geological implications[J]. Lithos, 2016, 261: 296-306. doi: 10.1016/j.lithos.2015.11.023
    [22]
    Rooney A D, Chew D M, Selby D. Re-Os geochronology of the Neoproterozoic—Cambrian Dalradian Supergroup of Scotland and Ireland: Implications for Neoproterozoic stratigraphy, glaciations and Re-Os systematic[J]. Precambrian Research, 2011, 185(3-4): 202-214. doi: 10.1016/j.precamres.2011.01.009
    [23]
    Manoel T N, Sebly D, Galvez M E. et al. A pre-Sturtian depositional age of the lower Paraguay Belt, western Brazil, and its relationship to western Gondwana magmatism science direct[J]. Gondwana Research, 2021, 89: 238-246.
    [24]
    Selby D, Creaser R A, Fowler M G. Re-Os elemental and isotopic systematics in crude oils[J]. Earth and Planetary Science Letters, 2007, 71(2): 378-386.
    [25]
    Finlay A J, Selby D, Osborne M J, et al. Fault-charged mantle-fluid contamination of United Kingdom North Sea oils: Insights from Re-Os isotopes[J]. Geology, 2010, 38: 979-982.
    [26]
    Finlay A J, Selby D, Osborne M J. Re-Os geochronology and fingerprinting of United Kingdom Atlantic margin oil: Temporal implications for regional petroleum systems[J]. Geology, 2011, 39(5): 475-478. doi: 10.1130/G31781.1
    [27]
    Finlay A J, Selby D, Osborne M J. Petroleum source rock identification of United Kingdom Atlantic margin oil fields and the western Canadian oil sands using platinum, palladium, osmium and rhenium: Implications for global petroleum systems[J]. Earth and Planetary Science Letters, 2012, 313-314: 95-104. doi: 10.1016/j.epsl.2011.11.003
    [28]
    Meng Q A, Wang X, Huo Q L, et al. Rhenium-osmium (Re-Os) geochronology of crude oil from lacustrine source rocks of the Hailar Basin, NE China[J]. Petroleum Science, 2021, 18: 1-9. doi: 10.1007/s12182-020-00518-x
    [29]
    Selby D, Creaser R A, Dewing K, et al. Evaluation of bitumen as a 187Re-187Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada[J]. Earth and Planetary Science Letters, 2005, 235(1): 1-15.
    [30]
    李超, 屈文俊, 王登红, 等. 沥青样品铼-锇同位素分析溶解实验研究[J]. 岩矿测试, 2011, 30(6): 688-694. doi: 10.3969/j.issn.0254-5357.2011.06.007

    Li C, Qu W J, Wang D H, et al. Dissolving experimental research of Re-Os isotope system for bitumen samples[J]. Rock and Mineral Analysis, 2011, 30(6): 688-694. doi: 10.3969/j.issn.0254-5357.2011.06.007
    [31]
    Wang P, Hu Y, Liu L, et al. Re-Os dating of bitumen from paleo-oil reservoir in the Qinglong antimony deposit, Guizhou Province, China and its geological significance[J]. Acta Geologica Sinica, 2017, 91(6): 2153-2163. doi: 10.1111/1755-6724.13455
    [32]
    Su A, Chen H, Feng Y, et al. Dating and characterizing primary gas accumulation in Precambrian dolomite reservoirs, central Sichuan Basin, China: Insights from pyrobitumen Re-Os and dolomite U-Pb geochronology[J]. Precambrian Research, 2020, 350: 1-14. doi: 10.3969/j.issn.1672-4135.2020.01.001
    [33]
    Zhao B, Li R, Qin X, et al. Biomarkers and Re-Os geo-chronology of solid bitumen in the Beiba Dome, northern Sichuan Basin, China: Implications for solid bitumen origin and petroleum system evolution[J]. Marine and Petroleum Geology, 2021, 126: 1-21.
    [34]
    Selby D, Creaser R A. Direct radiometric dating of hy-drocarbon deposits using rhenium-osmium isotopes[J]. Science, 2005, 308(5726): 1293-1295. doi: 10.1126/science.1111081
    [35]
    黄少华, 秦明宽, Selby D, 等. 准噶尔盆地西北缘超覆带侏罗系油砂地球化学特征及Re-Os同位素定年[J]. 地学前缘, 2018, 25(2): 254-266. doi: 10.13745/j.esf.2018.02.026

    Huang S H, Qin M K, Selby D, et al. Geochemistry characteristics and Re-Os isotopic dating of Jurassic oil sands in the northwestern margin of the Junnggar Basin[J]. Earth Science Frontiers, 2018, 25(2): 254-266. doi: 10.13745/j.esf.2018.02.026
    [36]
    王剑, 付修根, 杜安道, 等. 羌塘盆地胜利河海相油页岩地球化学特征及Re-Os定年[J]. 海相油气地质, 2007, 12(3): 21-26. doi: 10.3969/j.issn.1672-9854.2007.03.005

    Wang J, Fu X G, Du A D, et al. Organic geochemistry and Re-Os dating of marine oil shale in Shenglihe area, northern Tibet, China[J]. Marine Origin Petroleum Geology, 2007, 12(3): 21 -26. doi: 10.3969/j.issn.1672-9854.2007.03.005
    [37]
    Wei S, Fu Y, Liang H, et al. Re-Os geochronology of the Cambrian stage-2 and -3 boundary in Zhijin County, Guizhou Province, China[J]. Acta Geochimica, 2018, 37: 323-333. doi: 10.1007/s11631-017-0228-5
    [38]
    Finlay A J, Selby D, Gröcke D R. Tracking the Hirnan-tian glaciation using Os isotopes[J]. Earth and Planetary Science Letters, 2010, 293: 339-348. doi: 10.1016/j.epsl.2010.02.049
    [39]
    赵鸿, 李超, 江小均, 等. Re-Os同位素精确厘定长兴"金钉子"灰岩沉积年龄[J]. 科学通报, 2015, 60(23): 2209-2215. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201523007.htm

    Zhao H, Li C, Jiang X J, et al. Direct radiometric dating of limestone from Changxing Permian—Triassic boundary using the Re-Os geochronometer[J]. Chinese Science Bulletin, 2015, 60(23): 2209-2215. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201523007.htm
    [40]
    Cohen A S. The rhenium-osmium isotope system: App-lications to geochronological and palaeoenvironmental problems[J]. Journal of the Geological Society, 2004, 161: 729-734. doi: 10.1144/0016-764903-084
    [41]
    Creaser R A, Stasiuk L D. Depositional age of the Dou-glas Formation, northern Saskatchewan, determined by Re-Os geochronology[J]. Geological Survey of Canada Bulletin, 2007, 588(18): 341-346.
    [42]
    Rooney A D, Macdonald F A, Strauss J V, et al. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 51-56. doi: 10.1073/pnas.1317266110
    [43]
    Quitté G, Robin E, Levasseur S, et al. Osmium, tungsten, and chromium isotopes in sediments and in Ni-rich spinel at the K-T boundary: Signature of a chondritic impactor[J]. Meteoritics and Planetary Science, 2007, 42(9): 1567-1580. doi: 10.1111/j.1945-5100.2007.tb00591.x
    [44]
    Zaiss J, Ravizza G, Goderis S, et al. A complete Os excursion across a terrestrial Cretaceous—Paleogene boundary at the West Bijou site, Colorado, with evidence for recent open system behavior[J]. Chemical Geology, 2014, 385: 7-16. doi: 10.1016/j.chemgeo.2014.07.010
    [45]
    Jones M M, Sageman B B, Selby D, et al. Regional chrono-stratigraphic synthesis of the Cenomanian—Turonian Oceanic Anoxic Event 2 (OAE2) interval, western interior basin (USA): New Re-Os chemostratigraphy and 40Ar/39Ar geochronology[J]. GSA Bulletin, 2021, 133: 1090-1104. doi: 10.1130/B35594.1
    [46]
    Yang X, Zhang Z, Li C, et al. Geochemistry and Re-Os geochronology of the organic-rich sedimentary rocks in the Jingtieshan Fe-Cu deposit, North Qilian Mountains, NW China[J]. Journal of Asian Earth Sciences, 2016, 119: 65-77. doi: 10.1016/j.jseaes.2016.01.007
    [47]
    陈玲, 马昌前, 凌文黎, 等. 中国南方存在印支期的油气藏——Re-Os同位素体系的制[J]. 地质科技情报, 2010, 29(2): 95-99. doi: 10.3969/j.issn.1000-7849.2010.02.017

    Chen L, Ma C Q, Ling W L, et al. Indosinian hydrocarbon accumulation in South China: A Re-Os isotope constrain[J]. Geological Science and Technology Information, 2010, 29(2): 95-99. doi: 10.3969/j.issn.1000-7849.2010.02.017
    [48]
    Liu J, Selby D, Zhou H, et al. Further evaluation of the Re-Os systematics of crude oil: Implications for Re-Os geochronology of petroleum systems[J]. Chemical Geology, 2019, 513: 1-22. doi: 10.1016/j.chemgeo.2019.03.004
    [49]
    Mahdaoui F, Reisberg L, Michels R, et al. Effect of the progressive precipitation of petroleum asphaltenes on the Re-Os radioisotope system[J]. Chemical Geology, 2013, 358: 90-100. doi: 10.1016/j.chemgeo.2013.08.038
    [50]
    Lillis P G, Selby D. Evaluation of the rhenium-osmium geochronometer in the phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA[J]. Geochimica et Cosmochimica Acta, 2013, 118: 312-330. doi: 10.1016/j.gca.2013.04.021
    [51]
    Ge X, Shen C, Selby D, Deng D, et al. Apatite fission-track and Re-Os geochronology of the Xuefeng uplift, China: Temporal implications for dry gas associated hydrocarbon systems[J]. Geology, 2016, 44: 491-494. doi: 10.3969/j.issn.1000-8845.2016.04.009
    [52]
    Ge X, Shen C B, Selby D, et al. Neoproterozoic—Cam-brian petroleum system evolution of the Micang Shan uplift, northern Sichuan Basin, China: Insights from pyrobitumen rhenium-osmium geochronology and apatite fission-track analysis[J]. AAPG Bulletin, 2018, 102(8): 1429-1453. doi: 10.1306/1107171616617170
    [53]
    陈郑辉, 李超, 屈文俊, 等. 石墨Re-Os同位素分析及其在成矿年代学中的初步运用[J]. 岩石学报, 2010, 26(10): 3411-3417. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011022.htm

    Chen Z H, Li C, Qu W J, et al. Research and preliminary application in metallogenic chronology of Re-Os isotope system in graphite samples[J]. Acta Petrologica Sinica, 2010, 26(10): 3411-3417. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011022.htm
    [54]
    李超, 王登红, 周利敏, 等. 湖南鲁塘石墨矿Re-Os同位素研究[J]. 岩矿测试, 2017, 36(3): 297-304. doi: 10.15898/j.cnki.11-2131/td.201704060050

    Li C, Wang D H, Zhou L M, et al. Study on the Re-Os isotope composition of graphite from the Lutang graphite deposit in Hunan Province[J]. Rock and Mineral Analysis, 2017, 36(3): 297-304. doi: 10.15898/j.cnki.11-2131/td.201704060050
    [55]
    Kendall B S, Creaser R A, Selby D. 187Re-187Os geo-chronology of Precambrian organic-rich sedimentary rocks[J]. Geological Society London Special Publications, 2009, 326(1): 85-107. doi: 10.1144/SP326.5
    [56]
    Moser J, Wegscheider W, Meisel T, et al. An uncertainty budget for trace analysis by isotope dilution ICP-MS with proper consideration of correlation[J]. Analytical Bioanalytical Chemistry, 2003, 377(1): 97-110. doi: 10.1007/s00216-003-2028-5
    [57]
    刘华, 屈文俊, 王英滨, 等. 用三氧化铬-硫酸溶剂对黑色页岩铼-锇定年方法初探[J]. 岩矿测试, 2008, 27(4): 245-249. doi: 10.3969/j.issn.0254-5357.2008.04.002

    Liu H, Qu W J, Wang Y B, et al. Primary study on Re-Os isotopic dating of black shale using CrO3-H2SO4-Carius tube-inductively coupled plasma mass spectrometry system[J]. Rock and Mineral Analysis, 2008, 27(4): 245-249. doi: 10.3969/j.issn.0254-5357.2008.04.002
    [58]
    Li J, Yin L. Rhenium-osmium isotope measurements in marine shale reference material SBC implications for method validation and quality control[J]. Geostandards and Geoanalytical Research, 2019, 43: 497-507. doi: 10.1111/ggr.12267
    [59]
    Yin L, Li J, Liu J, et al. Precise and accurate Re-Os isotope dating of organic-rich sedimentary rocks by thermal ionization mass spectrometry with an improved H2O2-HNO3 digestion procedure[J]. International Journal of Mass Spectrometry, 2017, 421: 263-270. doi: 10.1016/j.ijms.2017.07.013
    [60]
    Li X W, Li C, Pei H X, et al. Purified Na2CrO4-H2SO4: A new low blank medium for Re-Os dating of black shale[J]. Geostandards and Geoanalytical Research, 2021, 45(2): 313-323. doi: 10.1111/ggr.12375
    [61]
    李超, 屈文俊, 周利敏, 等. Carius管直接蒸馏快速分离锇方法研究[J]. 岩矿测试, 2010, 29(1): 14-16. doi: 10.3969/j.issn.0254-5357.2010.01.004

    Li C, Qu W J, Zhou L M, et al. Rapid separation of osmium by direct distillation with Carius tube[J]. Rock and Mineral Analysis, 2010, 29(1): 14-16. doi: 10.3969/j.issn.0254-5357.2010.01.004
    [62]
    周利敏, 高炳宇, 王礼兵, 等. Carius管直接蒸馏快速分离锇方法的改进[J]. 岩矿测试, 2012, 31(3): 413-418. doi: 10.3969/j.issn.0254-5357.2012.03.005

    Zhou L M, Gao B Y, Wang L B, et al. Improvements on the separation method of osmium by direct distillation in Carius tube[J]. Rock and Mineral Analysis, 2012, 31(3): 413-418. doi: 10.3969/j.issn.0254-5357.2012.03.005
    [63]
    李超, 屈文俊, 杜安道, 等. 铼-锇同位素定年法中丙酮萃取铼的系统研究[J]. 岩矿测试, 2009, 28(3): 233-238. doi: 10.3969/j.issn.0254-5357.2009.03.008

    Li C, Qu W J, Du A D, et al. Comprehensive study on extraction of rhenium with acetone in Re-Os isotopic dating[J]. Rock and Mineral Analysis, 2009, 28(3): 233-238. doi: 10.3969/j.issn.0254-5357.2009.03.008
    [64]
    Morgan J W, Walker R J. Isotopic determinations of rhe-nium and osmium in meteorites by using fusion, distillation and ion-exchange separations[J]. Analytica Chimica Acta, 1989, 222(1): 291-300. doi: 10.1016/S0003-2670(00)81904-2
    [65]
    Morgan J W, Golightly D W, Dorrzapf Jr A F. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry[J]. Talanta, 1991, 38(3): 259-265. doi: 10.1016/0039-9140(91)80045-2
    [66]
    Markey R, Stein H, Morgan J. Highly precise Re-Os dating for molybdenite using alkaline fusion and NTIMS[J]. Talanta, 1998, 45(5): 935-946. doi: 10.1016/S0039-9140(97)00198-7
    [67]
    Hurtig N C, Georgiev S V, Zimmerman A, et al. Re-Os geochronology for the NIST RM8505 crude oil: The importance of analytical protocol and uncertainty[J]. Chemical Geology, 2020, 539: 1-17.
    [68]
    Georgiev S V, Zimmerman A, Yang G, et al. Comparison of chemical procedures for Re-isotopic measurements by N-TIMS[J]. Chemical Geology, 2018, 483: 151-161. doi: 10.1016/j.chemgeo.2018.03.006
    [69]
    DiMarzio J M, Georgiev S V, Stein H J, et al. Residency of rhenium and osmium in a heavy crude oil[J]. Geochimica et Cosmochimica Acta, 2018, 220: 180-200. doi: 10.1016/j.gca.2017.09.038
    [70]
    Sen I S, Peucker-Ehrenbrink B. Determination of os-mium concentrations and 187Os/188Os of crude oils and source rocks by coupling high-pressure, high-temperature digestion with sparging OsO4 into a multicollector inductively coupled plasma mass spectrometer[J]. Analytical Chemistry, 2014, 86(6): 2982-2988. doi: 10.1021/ac403413y
    [71]
    Wang M J, Chu Z Y, Meisel T C, et al. Determination of Re, Os, Ir, Ru, Pt, Pd mass fractions and 187Os/188Os ratios of organic-rich geological reference materials[J]. Geostandards and Geoanalytical Research, 2022, 46: 333-349. doi: 10.1111/ggr.12423
    [72]
    Meisel T, Moser J. Platinum-group element and rhenium concentrations in low abundance reference materials[J]. Geostandards and Geoanalytical Research, 2004, 28: 233-250. doi: 10.1111/j.1751-908X.2004.tb00740.x
    [73]
    Ishikawa A, Senda R, Suzuki K, et al. Re-evaluating digestion methods for highly siderophile element and 187Os isotope analysis: Evidence from geological reference materials[J]. Chemical Geology, 2014, 384: 27-46. doi: 10.1016/j.chemgeo.2014.06.013
    [74]
    Nozaki T, Suzuki K, Ravizza G, et al. A method for rapid determination of Re and Os isotope compositions using ID-MC-ICP-MS combined with the sparging method[J]. Geostandards and Geoanalytical Research, 2012, 36(2): 131-148. doi: 10.1111/j.1751-908X.2011.00125.x
    [75]
    Georgiev S V, Stein H J, Hannah J L, et al. Re-Os dating of maltenes and asphaltenes within single samples of crude oil[J]. Geochimica et Cosmochimica Acta, 2016, 179: 53-75. doi: 10.1016/j.gca.2016.01.016
    [76]
    Liu J, Selby D, Obermajer M, et al. Rhenium-osmium geochronology and oil-source correlation of the Duvernay petroleum system, western Canada sedimentary basin: Implications for the application of the rhenium-osmium geochronometer to petroleum systems[J]. AAPG Bulletin, 2018, 102(8): 1627-1657. doi: 10.1306/12081717105
    [77]
    Creaser R, Szatmari P, Milani E. Extending Re-Os shale geochronology to lacustrine depositional systems: A case study from the major hydrocarbon source rocks of the Brazilian Mesozoic marginal basins[C]//Proceedings of the 33rd International Geological Congress. Oslo, 2008.
    [78]
    Poirier A, Hillaire-Marcel C. Improved Os-isotope stra-tigraphy of the Arctic Ocean[J]. Geophysical Research Letters, 2011, 38: 14607-14611.
    [79]
    Cumming V M, Selby D, Lillis P G. Re-Os geochronology of the lacustrine Green River Formation: Insights into direct depositional dating of lacustrine successions, Re-Os systematics and paleocontinental weathering[J]. Earth and Planetary Science Letters, 2012, 359-360: 194-205. doi: 10.1016/j.epsl.2012.10.012
    [80]
    刘桂建, 彭子成, 杨刚. 煤中黄铁矿的铼-锇同位素含量及其地质意义[J]. 地学前缘, 2006, 13(1): 211-215. doi: 10.3321/j.issn:1005-2321.2006.01.028

    Liu G J, Peng Z C, Yang G. Abundance and geological significance of rhenium and osmium in pyrite samples from coals[J]. Earth Science Frontiers, 2006, 13(1): 211-215. doi: 10.3321/j.issn:1005-2321.2006.01.028
    [81]
    Goswami V, Hannah J L, Stein H J. Why terrestrial coals cannot be dated using the Re-Os geochronometer: Evidence from the Finnmark Platform, southern Barents Sea and the Fire Clay coal horizon, central Appalachian Basin[J]. International Journal of Coal Geology, 2018, 188: 121-135. doi: 10.1016/j.coal.2018.02.005
    [82]
    Tripathy G R, Hannah J L, Stein H J, et al. Radiometric dating of marine-influenced coal using Re-Os geochronology[J]. Earth and Planetary Science Letters, 2015, 432: 13-23. doi: 10.1016/j.epsl.2015.09.030
    [83]
    Rotich E K, Handler M R, Naeher S, et al. Re-Os geo-chronology and isotope systematics, and organic and sulfur geochemistry of the middle-late Paleocene Waipawa Formation, New Zealand: Insights into early Paleogene seawater Os isotope composition[J]. Chemical Geology, 2020, 536: 1-18.
    [84]
    Harris N B, Mnich C A, Selby D, et al. Minor and trace element and Re-Os chemistry of the upper Devonian Woodford Shale, Permian Basin, West Texas: Insights into metal abundance and basin processes[J]. Chemical Geology, 2013, 356: 76-93. doi: 10.1016/j.chemgeo.2013.07.018
    [85]
    Liu Z Y, Selby D, Hackley P C, et al. Evidence of wild-fires and elevated atmospheric oxygen at the Frasnian—Famennian boundary in New York (USA): Implications for the late Devonian mass extinction[J]. Geological Society of America Bulletin, 2020, 132: 2043-2054. doi: 10.1130/B35457.1
    [86]
    Pietras J T, Dennett A, Sebly D, et al. The role of organic matter diversity on the Re-Os systematics of organic-rich sedimentary units: Insights into the controls of isochron age determinations from the lacustrine Green River Formation[J]. Chemical Geology, 2022, 604: 120939. doi: 10.1016/j.chemgeo.2022.120939
    [87]
    Peucker-Ehrenbrink B, Ravizza G. The marine osmium isotope record[J]. Terra Nova, 2000, 12: 205-219. doi: 10.1046/j.1365-3121.2000.00295.x
    [88]
    Cohen A S. The rhenium-osmium isotope system: App-lications to geochronological and palaeoenvironmental problems[J]. Journal of the Geological Society, 2004, 161: 729-734. doi: 10.1144/0016-764903-084
    [89]
    李超, 屈文俊, 王登红, 等. Re-Os同位素在沉积地层精确定年及古环境反演中的应用进展[J]. 地球学报, 2014, 35(4): 405-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404003.htm

    Li C, Qu W J, Wang D H, et al. The progress of applying Re-Os isotope to dating of organic-rich sedimentary rocks and reconstruction of palaeoenvironment[J]. Acta Geoscientica Sinica, 2014, 35(4): 405-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201404003.htm
    [90]
    Goto K T, Sekine Y, Suzuki K, et al. Redox conditions in the atmosphere and shallow-marine environments during the first Huronian deglaciation: Insights from Os isotopes and redox-sensitive elements[J]. Earth & Planetary Science Letters, 2013, 376: 145-154.
    [91]
    李超, 屈文俊, 王登红, 等. 富有机质地质样品Re-Os同位素体系研究进展[J]. 岩石矿物学杂志, 2010, 29(4): 421-430. doi: 10.3969/j.issn.1000-6524.2010.04.009

    Li C, Qu W J, Wang D H, et al. Advances in the study of the Re-Os isotopic system of organic-rich samples[J]. Acta Petrologica et Mineralogica, 2010, 29(4): 421-430. doi: 10.3969/j.issn.1000-6524.2010.04.009
    [92]
    沈传波, Selby D, 梅廉夫, 等. 油气成藏定年的Re-Os同位素方法应用研究[J]. 矿物岩石, 2011, 31(4): 87-93. doi: 10.3969/j.issn.1001-6872.2011.04.014

    Shen C B, Selby D, Mei L F, et al. Advances in the study of Re-Os geochronology and tracing of hydrocarbon generation and accumulation[J]. Journal of Mineralogy and Petrology, 2011, 31(4): 87-93. doi: 10.3969/j.issn.1001-6872.2011.04.014
    [93]
    Huc A Y, Nederlof P, Debarre R, et al. Pyrobitumen occurrence and formation in a Cambro—Ordovician sandstone reservoir, Fahud Salt Basin, North Oman[J]. Chemical Geology, 2000, 168: 99-112. doi: 10.1016/S0009-2541(00)00190-X
    [94]
    Mahdaoui F, Michels R, Reisberg L, et al. Behavior of Re and Os during contact between an aqueous solution and oil: Consequences for the application of the Re-Os geochronometer to petroleum[J]. Geochimica et Cosmochimica Acta, 2015, 158: 1-21. doi: 10.1016/j.gca.2015.02.009
    [95]
    Smoliar M I, Walker R J, Morgan J W. Re-Os ages of group ⅡA, ⅢA, ⅣA and ⅥB iron meteorites[J]. Science, 1996, 271: 1099-1102. doi: 10.1126/science.271.5252.1099
    [96]
    杜安道, 赵敦敏, 王淑贤, 等. Carius管溶样-负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J]. 岩矿测试, 2001, 20(4): 247-252. doi: 10.3969/j.issn.0254-5357.2001.04.002

    Du A D, Zhao D M, Wang S X, et al. Precise Re-Os dating of molybdenite by ID-NTIMS with Carius tube sample preparation[J]. Rock and Mineral Analysis, 2001, 20(4): 247-252. doi: 10.3969/j.issn.0254-5357.2001.04.002
    [97]
    屈文俊, 杜安道. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄[J]. 岩矿测试, 2003, 22(4): 254-262. doi: 10.3969/j.issn.0254-5357.2003.04.003

    Qu W J, Du A D. Highly precise Re-Os dating of molybdenite by ICP-MS with Carius tube sample digestion[J]. Rock and Mineral Analysis, 2003, 22(4): 254-262. doi: 10.3969/j.issn.0254-5357.2003.04.003
    [98]
    梁树平, 屈文俊, 杜安道, 等. 两种质谱仪在辉钼矿铼-锇年龄测定中的应用比较[J]. 岩矿测试, 2004, 23(4): 268-272. doi: 10.3969/j.issn.0254-5357.2004.04.007

    Liang S P, Qu W J, Du A D, et al. Comparison of Re-Os dating of molybdenite samples between two types of mass spectrometric determination[J]. Rock and Mineral Analysis, 2004, 23(4): 268-272. doi: 10.3969/j.issn.0254-5357.2004.04.007
    [99]
    Baioumy H M, Eglinton L B, Peucker-Ehrenbrink B. Rhenium-osmium isotope and platinum group element systematics of marine vs. non-marine organic-rich sediments and coals from Egypt[J]. Chemical Geology, 2011, 285(1-4): 70-81. doi: 10.1016/j.chemgeo.2011.02.026
    [100]
    Ravizza G, Peucker-Ehrenbrink B. Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record[J]. Science, 2003, 302(5649): 1392-1395. doi: 10.1126/science.1089209
    [101]
    CariusL. Ueber die elementaranalyse organischer Ver-bindungen[J]. Justus Liebigs Annalen der Chemie, 1860, 116(1): 1-30. doi: 10.1002/jlac.18601160102
    [102]
    Shirey S B, Walker R J. Carius tube digestion for low-blank rhenium-osmium analysis[J]. Analytical Chemistry, 1995, 67(13): 2136-2141. doi: 10.1021/ac00109a036
    [103]
    Cohen A S, Waters F G. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionization mass spectrometry[J]. Analytica Chimica Acta, 1996, 332(2-3): 269-275. doi: 10.1016/0003-2670(96)00226-7
    [104]
    Pašava J, Oszczepalski S, Du A D. Re-Os age of non-mineralized black shale from the Kupferschiefer, Poland, and implications for metal enrichment[J]. Mineralium Deposita, 2010, 45: 189-199. doi: 10.1007/s00126-009-0269-8
    [105]
    Kendall B S, Ackenb D V, Creaser R A. Depositional age of the early Paleoproterozoic Klipputs Member, Nelani Formation (Ghaap Group, Transvaal Supergroup, South Africa) and implications for low-level Re-Os geochronology and Paleoproterozoic global correlations brian[J]. Precambrian Research, 2013, 237: 1-12. doi: 10.1016/j.precamres.2013.08.002
    [106]
    Birck J L, Barman M R, Capmas F. Re-Os isotopic measurements at the femtomole level in natural samples[J]. Geostandards Newsletter, 1997, 21(1): 19-27. doi: 10.1111/j.1751-908X.1997.tb00528.x
    [107]
    Nakanishi N, Yokoyama T, Ishikawa A. Refinement of the micro-distillation technique for isotopic analysis of geological samples with pg-level osmium contents[J]. Geostandards and Geoanalytical Research, 2019, 43(2): 231-243. doi: 10.1111/ggr.12262

Catalog

    Article views (284) PDF downloads (58) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return