• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
DONG Qiuyao,SONG Chao,WEN Haotian,et al. Comprehensive Geochemical Evaluation and Influencing Factors of Topsoil Nutrients in a Farming Area of Dabie Mountain in Western Anhui, China[J]. Rock and Mineral Analysis,2024,43(2):344−355. DOI: 10.15898/j.ykcs.202206180117
Citation: DONG Qiuyao,SONG Chao,WEN Haotian,et al. Comprehensive Geochemical Evaluation and Influencing Factors of Topsoil Nutrients in a Farming Area of Dabie Mountain in Western Anhui, China[J]. Rock and Mineral Analysis,2024,43(2):344−355. DOI: 10.15898/j.ykcs.202206180117

Comprehensive Geochemical Evaluation and Influencing Factors of Topsoil Nutrients in a Farming Area of Dabie Mountain in Western Anhui, China

More Information
  • Received Date: June 17, 2022
  • Revised Date: August 06, 2022
  • Accepted Date: November 04, 2022
  • Available Online: February 01, 2023
  • HIGHLIGHTS
    (1) The single index nutrient grade and comprehensive evaluation of soil nutrient grade are often used to analyze soil nutrient status.
    (2) The comprehensive grade of soil nutrient geochemistry in the Dabie Mountain area of Western Anhui Province is mainly medium, followed by relatively deficient. The soil in the area is acidic, TN content is medium abundant, TP content is medium to lacking, K content is the most abundant, and organic matter content is medium to lacking.
    (3) Land use, soil type and geomorphic type have different effects on the spatial distribution of pH, nutrient elements and organic matter.

    Western Anhui is an important precision agricultural area in China, characterized by diverse landforms and multiple soil types. To determine the spatial distribution of soil nutrient elements and their controlling factors, we analyzed 5 nutrient indicators by collecting 1295 groups of shallow soil (0-20cm) samples and conducted a comprehensive soil nutrient geochemical grade evaluation on the basis of single indicator analysis. The results show that soil nutrients are poor in the cultivated lands of the northern region. The use of fertilizer should be adjusted as needed to balance the soil nutrients in some areas, and the management of farmland nutrients is suggested for improving the agricultural yield. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202206180117.

    BRIEF REPORT
    Significance: Precision agriculture, as an emerging farm management strategy, is partly tasked with ensuring optimal plant nutrition and proper fertilizer application, including accurate dosage, an appropriate nitrogen (N)-phosphorus (P)-potassium (K) ratio, and efficient storage and distribution of nutrition, while also preventing environmental problems such as soil acidification, the “chemical time bomb” effect, phosphorus load of surface waters, eutrophication, rapid siltation of canals and reservoirs, nitrate pollution of drinking water resources, and the accumulation and mobilization of potential toxic compounds, etc. Western Anhui is an important precision agricultural area in China, characterized by diverse landforms and multiple soil types. We find that the Dabie Mountain area of Western Anhui exhibits poor soil nutrient levels, particularly within the cultivated lands of the northern region. To ameliorate this, it is advisable to judiciously augment the application of organic fertilizers, nitrogen, and phosphorus. The implementation of a rotational system between paddy and dry fields is suggested for enhanced soil nutrient content. It is also recommended to regulate soil pH through the utilization of matured lime to facilitate increased grain production. Additionally, exploiting potassium-enriched land resources is recommended. This study provides crucial scientific evidence for establishing large-scale, concentrated, and contiguous national commodity grain production bases.
    Methods: A total of 1295 topsoil samples (0-20cm) were collected in the Dabie Mountain area of Western Anhui. Soil pH was determined in a 1∶2.5 ratio of soil to water using a glass electrode. TN and TP were determined using the Kjeldahl method and X-ray fluorescence spectrometry, respectively. K and soil organic matter (SOM) were analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES) and ammonium ferrous sulfate volumetric method, respectively. The comprehensive geochemical grade evaluation of soil nutrients was conducted. The impact factors of these five geochemistry indexes were studied based mainly on the correlation analysis.
    Data and Results: The comprehensive geochemical grade evaluation of soil nutrients in the region showed that the overall soil nutrient classifications in the region were medium, accounting for 60.10% of the total area, mainly distributed in the southern parts of Huoshan County and the northeastern forest area of Jinzhai County. The second prevalent category was moderately deficient soil, constituting 25.27%, scattered sporadically in a non-contiguous manner primarily in the northern part of the surveyed area in Yu’an district. Results from the analysis of 5 various indexes indicated that 98.88% of the soils in the study area were acidic, with a significant influence from geomorphic types. TN distribution was mainly medium to rich, significantly affected by soil types. TP content was primarily medium and deficient, with a significant influence from geomorphic types. K content was the most abundant element, with 97.81% having medium or higher content, mainly influenced by geomorphic types. SOM content was primarily medium to relatively deficient, influenced by soil types, land use patterns, and geomorphic types, and shows a highly positive correlation with TN content.
  • [1]
    邓小华, 张瑶, 田峰, 等. 湘西植烟土壤pH和主要养分特征及其相互关系[J]. 土壤, 2017, 49(1): 49−56.

    Deng X H, Zhang Y, Tian F, et al. pH and main nutrients of tobacco-growing soils and their relations in Western Hunan[J]. Soils, 2017, 49(1): 49−56.
    [2]
    张子璐, 刘峰, 侯庭钰. 我国稻田氮磷流失现状及影响因素研究进展[J]. 应用生态学报, 2019, 30(10): 3292−3302. doi: 10.13287/j.1001-9332.201910.029

    Zhang Z L, Liu F, Hou T Y. Current status of nitrogen and phosphorus losses and related factors in Chinese paddy fields[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3292−3302. doi: 10.13287/j.1001-9332.201910.029
    [3]
    陆保国. 霍山县耕地土壤养分现状及施肥对策[J]. 安徽农学通报, 2013, 19(17): 73−75. doi: 10.16377/j.cnki.issn1007-7731.2013.17.030

    Lu B G. Present situation of soil nutrients and fertilization countermeasures in Huoshan County[J]. Anhui Agricultural Science Bulletin, 2013, 19(17): 73−75. doi: 10.16377/j.cnki.issn1007-7731.2013.17.030
    [4]
    唐贤, 梁丰, 徐明岗, 等. 长期施用化肥对农田土壤pH影响的整合分析[J]. 吉林农业大学学报, 2020, 42(3): 316−321. doi: 10.13327/j.jjlau.2020.4506

    Tang X, Liang F, Xu M G, et al. A meta-analysis of effects of long-term application of chemical fertilizer on pH of farmland soil[J]. Journal of Jilin Agricultural University, 2020, 42(3): 316−321. doi: 10.13327/j.jjlau.2020.4506
    [5]
    解庆锋, 周小果, 马振波, 等. 南阳盆地农耕区表层土壤酸碱度现状研究[J]. 安徽农业科学, 2021, 49(5): 69−71, 75. doi: 10.3969/j.issn.0517-6611.2021.05.019

    Xie Q F, Zhou X G, Ma Z B, et al. Study on the status of surface soil acidity and alkalinity in agricultural areas of Nanyang Basin[J]. Anhui Agriculture Science, 2021, 49(5): 69−71, 75. doi: 10.3969/j.issn.0517-6611.2021.05.019
    [6]
    Eich-Greatorex S, Sogn T A, Øgaard A F, et al. Plant availability of inorganic and organic selenium fertiliser as influenced by soil organic matter content and pH[J]. Nutrient Cycling in Agroecosystems, 2007, 79(3): 221−231. doi: 10.1007/s10705-007-9109-3
    [7]
    梁俊捷.气候、地形和土壤性质对我国农田土壤有效钾分布的影响[D].成都: 四川农业大学, 2018.

    Liang J J. Effects of climate, topography and soil properties on soil available potassium across China[D]. Chengdu: Sichuan Agricultural University, 2018.
    [8]
    蒋文惠.地形和土地利用对山区土壤养分空间变异的影响[D].泰安: 山东农业大学, 2014.

    Jiang W H. Effects of land use and topographic factors on soil nutrients variability in mountain area[D]. Tai’an: Shandong Agricultural University, 2014.
    [9]
    王剑, 周琳, 李志伟, 等. 凉山主要植烟土壤类型氮、磷、钾分布特征差异分析[J]. 山西农业科学, 2012, 40(11): 1191−1194. doi: 10.3969/j.issn.1002-2481.2012.11.19

    Wang J, Zhou L, Li Z W, et al. Analysis of nitrogen and phosphorus potassium distribution characteristics variance for the main tobacco soil type profile in Liangshan[J]. Journal of Shanxi Agricultural Sciences, 2012, 40(11): 1191−1194. doi: 10.3969/j.issn.1002-2481.2012.11.19
    [10]
    张晗, 赵小敏, 欧阳真程, 等. 江西省不同农田利用方式对土壤养分状况的影响[J]. 水土保持研究, 2018, 25(6): 53−60. doi: 10.13869/j.cnki.rswc.2018.06.008

    Zhang H, Zhao X M, Ouyang Z C, et al. Effectors of different farmland use types on soil nutrients in Jiangxi Province[J]. Research of Soil and Water Conservation, 2018, 25(6): 53−60. doi: 10.13869/j.cnki.rswc.2018.06.008
    [11]
    朱永青, 崔云霞, 李伟迪, 等. 太滆运河流域不同用地方式下土壤pH值、有机质及氮磷含量特征分析[J]. 生态与农村环境学报, 2020, 36(2): 171−178. doi: 10.19741/j.issn.1673-4831.2019.0721

    Zhu Y Q, Cui Y X, Li W D, et al. Analysis of soil pH, organic matter, nitrogen and phosphate characteristics under different land use types in Taige Canal Valley[J]. Journal of Ecology and Rural Environment, 2020, 36(2): 171−178. doi: 10.19741/j.issn.1673-4831.2019.0721
    [12]
    刁二龙, 曹广超, 曹生奎, 等. 祁连山南坡不同土地利用方式下土壤理化性质及空间变异性分析[J]. 西南农业学报, 2019, 32(8): 1864−1871. doi: 10.16213/j.cnki.scjas.2019.8.028

    Diao E L, Cao G C, Cao S K, et al. Analysis of soil physical and chemical properties and spatial variability under different land use patterns in southern slope of Qilian Mountains[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(8): 1864−1871. doi: 10.16213/j.cnki.scjas.2019.8.028
    [13]
    王亚男, 徐梦洁, 代圆凤, 等. 毕节市耕地土壤pH的空间变异特征与影响因素[J]. 土壤, 2018, 50(2): 385−390. doi: 10.13758/j.cnki.tr.2018.02.023

    Wang Y N, Xu M J, Dai Y F, et al. Spatial characteristics and influential factors of arable soil pH in Bijie, Guizhou[J]. Soils, 2018, 50(2): 385−390. doi: 10.13758/j.cnki.tr.2018.02.023
    [14]
    王祚林, 陈莉. 六安市农业现代化发展水平评价[J]. 合作经济与科技, 2019(2): 36−38. doi: 10.3969/j.issn.1672-190X.2019.02.013

    Wang Z L, Chen L. Evaluation of agricultural modernization development level in Lu’an City[J]. Cooperative Economy and Technology, 2019(2): 36−38. doi: 10.3969/j.issn.1672-190X.2019.02.013
    [15]
    张孝存, 崔格冲, 杨丽, 等. 商洛金凤山地区人工林土壤pH值及养分特征分析[J]. 辽宁农业科学, 2020(3): 9−12. doi: 10.3969/j.issn.1002-1728.2020.03.003

    Zhang X C, Cui G C, Yang L, et al. Analysis on soil nutrient properties and pH of different forest land in Jinfeng Mountain in Shangluo[J]. Liaoning Agricultural Sciences, 2020(3): 9−12. doi: 10.3969/j.issn.1002-1728.2020.03.003
    [16]
    周子方, 解燕, 易克, 等. 马龙植烟土壤pH值分布特征及其主控因素研究[J]. 中国土壤与肥料, 2019(5): 8−13.

    Zhou Z F, Xie Y, Yi K, et al. Distribution characteristics and influencing factors of pH value in tobacco growing soil in Malong[J]. Soil and Fertilizer Sciences in China, 2019(5): 8−13.
    [17]
    张驭航, 李玲, 王秀丽, 等. 河南省土壤pH值时空变化特征分析[J]. 土壤通报, 2019, 50(5): 1091−1100. doi: 10.19336/j.cnki.trtb.2019.05.12

    Zhang Y H, Li L, Wang X L, et al. Temporal and spatial variation of soil pH in Henan[J]. Chinese Journal of Soil Science, 2019, 50(5): 1091−1100. doi: 10.19336/j.cnki.trtb.2019.05.12
    [18]
    向娇, 宋超, 石迎春, 等. 安徽省六安地区土壤pH空间变异特征及其影响因素[J]. 土壤通报, 2021, 52(1): 34−41.

    Xiang J, Song C, Shi Y C, et al. Spatial variation characteristics and influencing factors of soil pH in the Lu ’an area of Anhui Province[J]. Chinese Journal of Soil Science, 2021, 52(1): 34−41.
    [19]
    闫志浩, 胡志华, 王士超, 等. 石灰用量对水稻油菜轮作区土壤酸度、土壤养分及作物生长的影响[J]. 中国农业科学, 2019, 52(23): 4285−4295. doi: 10.3864/j.issn.0578-1752.2019.23.009

    Yan Z H, Hu Z H, Wang S C, et al. Effects of lime content on soil acidity, soil nutrients and crop growth in rice-rape rotation system[J]. Scientia Agricultura Sinica, 2019, 52(23): 4285−4295. doi: 10.3864/j.issn.0578-1752.2019.23.009
    [20]
    姬王佳.陕北黄土区深剖面土壤水和氮素来源及其对土地利用变化的响应[D].杨凌: 西北农林科技大学, 2021.

    Ji W J. Sources of soil water and nitrogen and their response to land use change in deep deposits of Northern Shaanxi, China[D]. Yangling: Northwest A&F University, 2021.
    [21]
    张洋洋.白龙江流域土壤碳氮磷含量及空间分布特征研究[D].兰州: 兰州大学, 2017.

    Zhang Y Y. Study on contents and spatial distribution characteristics of soil carbon, nitrogen and phosphorus in Bailing River Basin[D]. Lanzhou: Lanzhou University, 2017.
    [22]
    李龙, 姚云峰, 秦富仓. 黄花甸子流域土壤全氮、速效磷、速效钾的空间变异[J]. 生态学杂志, 2015, 34(2): 373−379. doi: 10.13292/j.1000-4890.2015.0052

    Li L, Yao Y F, Qin F C. Spatial variability of soil total nitrogen, available phosphorus and available potassium in Huanghuadianzi Watershed[J]. Chinese Journal of Ecology, 2015, 34(2): 373−379. doi: 10.13292/j.1000-4890.2015.0052
    [23]
    顾涛, 朱晓华, 赵信文, 等. 广州新垦莲藕产区莲藕品质与地球化学条件的关系[J]. 岩矿测试, 2021, 40(6): 833−845. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106004

    Gu T, Zhu X H, Zhao X W, et al. Relationship between lotus root quality and geochemical conditions in the Xinken lotus root producing area of Guangzhou[J]. Rock and Mineral Analysis, 2021, 40(6): 833−845. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106004
    [24]
    许春雪, 袁建, 王亚平, 等. 沉积物中磷的赋存形态及磷形态顺序提取分析方法[J]. 岩矿测试, 2011, 30(6): 785−794. doi: 10.3969/j.issn.0254-5357.2011.06.024

    Xu C X, Yuan J, Wang Y P, et al. Speciation and release mechanism of phosphorus in sediments and analysis methods for sequential extraction[J]. Rock and Mineral Analysis, 2011, 30(6): 785−794. doi: 10.3969/j.issn.0254-5357.2011.06.024
    [25]
    董秋瑶, 赖书雅, 宋超, 等. 南阳盆地东部山区土壤锗分布特征及其影响因素分析[J]. 环境科学, 2022, 43(6): 442−452.

    Dong Q Y, Lai S Y, Song C, et al. Distribution characteristics and influencing factors of germanium in soil in the eastern mountainous area of the Nanyang Basin[J]. Environmental Science, 2022, 43(6): 442−452.
    [26]
    王辉.皖西大别山区土壤磷、硒分布特征及影响因素[D].北京: 中国地质大学(北京), 2018.

    Wang H. The distribution of phosphorus and selenium and their controlling factors of soils in Dabie Mountain, West Anhui Province[D]. Beijing: China University of Geosciences (Beijing), 2018.
    [27]
    夏炎, 宋延斌, 侯进凯, 等. 河南洛阳市土壤和农作物中钼分布规律与影响因素研究[J]. 岩矿测试, 2021, 40(6): 820−832. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106003

    Xia Y, Song Y B, Hou J K, et al. Distribution law and influencing factors of molybdenum in soils and crops in Luoyang, Henan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 820−832. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106003
    [28]
    白娜, 王立, 孔东升. 黑河自然保护区沼泽湿地土壤化学性质的空间分布特征研究[J]. 草业学报, 2017, 26(5): 15−28. doi: 10.11686/cyxb2016269

    Bai N, Wang L, Kong D S. Spatial distribution and chemical properties of marsh wetland soil in the Heihe Nature Reserve[J]. Acta Prataculture Sinica, 2017, 26(5): 15−28. doi: 10.11686/cyxb2016269
    [29]
    郭安廷, 崔锦霞, 许鑫, 等. 基于GIS与地统计的土壤养分空间变异研究[J]. 中国农学通报, 2018, 34(23): 72−79. doi: 10.11924/j.issn.1000-6850.casb17070049

    Guo A T, Cui J X, Xu X, et al. Spatial distribution of soil nutrients based on GIS and geostatistics[J]. Chinese Agricultural Science Bulletin, 2018, 34(23): 72−79. doi: 10.11924/j.issn.1000-6850.casb17070049
    [30]
    梁斌, 齐实. 北京山区土壤养分空间变化特征研究[J]. 土壤, 2018, 50(4): 769−777. doi: 10.13758/j.cnki.tr.2018.04.017

    Liang B, Qi S. Spatial distributions of soil nutrients in Beijing mountainous area[J]. Soils, 2018, 50(4): 769−777. doi: 10.13758/j.cnki.tr.2018.04.017
    [31]
    杨东伟.水田改旱作后土壤性态与土壤类型演变研究[D].杭州: 浙江大学, 2014.

    Yang D W. Evolution of soil characteristics and soil types after land-use conversion from paddy field to upland[D]. Hangzhou: Zhejiang University, 2014.
    [32]
    Dong Q Y, Xiang J, Song C, et al. Spatial distribution characteristics and main controlling factors of germanium in soil of Northern Dabie Mountains, China[J]. China. Journal of Groundwater Science and Engineering, 2022, 10(4): 381−392.
    [33]
    周殷竹, 王彪, 刘义, 等. 青海囊谦县城周边农耕区土壤质量地球化学评价及富硒土地利用分区[J]. 干旱区资源与环境, 2020, 34(10): 93−101. doi: 10.13448/j.cnki.jalre.2020.274

    Zhou Y Z, Wang B, Liu Y, et al. Geochemical evaluation of soil quality and land-use regionalization of selenium-rich soils in cultivated area around Nangqian County, Qinghai[J]. Journal of Arid Land Resources and Environment, 2020, 34(10): 93−101. doi: 10.13448/j.cnki.jalre.2020.274
    [34]
    杨红, 徐唱唱, 赛曼, 等. 不同土地利用方式对土壤含水量、pH值及电导率的影响[J]. 浙江农业学报, 2016, 28(11): 1922−1927. doi: 10.3969/j.issn.1004-1524.2016.11.18

    Yang H, Xu C C, Sai M, et al. Effects of land use on soil moisture, pH and electrical conductivity[J]. Acta Agriculturae Zhejiangensis, 2016, 28(11): 1922−1927. doi: 10.3969/j.issn.1004-1524.2016.11.18
    [35]
    董秋瑶, 温皓天, 宋超, 等. 河南南阳盆地东南耕区表层土壤养分地球化学综合评价及影响因素[J]. 现代地质, 2022, 36(2): 449−461.

    Dong Q Y, Wen H T, Song C, et al. Comprehensive evaluation and influencing factors of surface soil nutrient chemistry in southeastern cultivated area of the Nanyang, Henan Province[J]. Geoscience, 2022, 36(2): 449−461.
    [36]
    Wang Y, Zhang X, Huang C. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China[J]. Geoderma, 2009, 150(1): 141−149.
    [37]
    张阳, 屠乃美, 谢会雅, 等. 茶陵县烟稻复种区土壤养分时空变异特征[J]. 土壤通报, 2021, 52(2): 297−305. doi: 10.19336/j.cnki.trtb.2020081201

    Zhang Y, Tu N M, Xie H Y, et al. Spatial and temporal variation of soil nutrients in tobacco-rice multiple-cropping area of Chaling[J]. Chinese Journal of Soil Science, 2021, 52(2): 297−305. doi: 10.19336/j.cnki.trtb.2020081201
  • Cited by

    Periodical cited type(1)

    1. 牛爱钰,李欣,刘菲,杨珊珊. 溶解性二价铁-铁氧化物非均相体系氧化还原电位的电化学测定方法探究. 岩矿测试. 2024(03): 407-416 . 本站查看

    Other cited types(0)

Catalog

    Article views (142) PDF downloads (60) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return