• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
LIU Fangmei, GAN Cong, LIAO Binling, LUO Xiaobing, LAI Qiuxiang. Determination of Iridium and Rhodium in Copper Anode Slime by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulphide Fire Assay[J]. Rock and Mineral Analysis, 2023, 42(2): 298-306. DOI: 10.15898/j.cnki.11-2131/td.202205160102
Citation: LIU Fangmei, GAN Cong, LIAO Binling, LUO Xiaobing, LAI Qiuxiang. Determination of Iridium and Rhodium in Copper Anode Slime by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulphide Fire Assay[J]. Rock and Mineral Analysis, 2023, 42(2): 298-306. DOI: 10.15898/j.cnki.11-2131/td.202205160102

Determination of Iridium and Rhodium in Copper Anode Slime by Inductively Coupled Plasma-Mass Spectrometry with Nickel Sulphide Fire Assay

More Information
  • Received Date: May 15, 2022
  • Revised Date: August 19, 2022
  • Accepted Date: September 30, 2022
  • Available Online: February 01, 2023
  • HIGHLIGHTS
    (1) The scheme of nickel sulphide fire assay was optimized. When the ratio of nickel to sulfur was 4∶1, the fluidity of molten slag and the separation effect of slag buckle were good, and the iridium and rhodium in copper anode slime could be captured effectively.
    (2) The NiS beads were dissolved with 50% hydrochloric acid so that the precipitation of rhodium and iridium was separated from silver and other impurity elements through filtration when it was hot.
    (3) The precipitate of iridium and rhodium can be completely digested for 2 hours at 160℃. The effect of signal drift could be eliminated by using 203Tl and 185Re as the internal standards of iridium and rhodium, respectively.
    BACKGROUND

    With the wide application of iridium and rhodium in aerospace, electronics, energy and other fields, it has become a very attractive metal in the world. In China, iridium and rhodium ore resources are relatively scarce with low grade, so it is essential to recover iridium and rhodium from secondary mineral resources. Copper anode slime enriches most of the precious metals such as iridium and rhodium in ores, which has high comprehensive recovery value. At present, there is no detection standard for iridium and rhodium in copper anode slime. The migration behavior of iridium and rhodium was not clear, so it was difficult to achieve directional enrichment and efficient extraction of iridium and rhodium metals. Therefore, the development of detection methods for iridium and rhodium in copper anode slime is an important prerequisite for the recovery and extraction of iridium and rhodium.

    OBJECTIVES

    An analytical method for accurate determination of iridium and rhodium in copper anode slime was established to maximize the utilization of mineral resources and the recycling rate of iridium, rhodium and other precious metals. At the same time, it could provide data support for the purification of iridium and rhodium in copper anode slime.

    METHODS

    In this paper, a method for determination of iridium and rhodium in copper anode slime by inductively coupled plasma-mass spectrometry (ICP-MS) with nickel sulphide fire assay was established. In the experiment, the precious metals iridium and rhodium in the sample were captured by nickel sulphide fire assay. The NiS beads were dissolved with 50% hydrochloric acid so that the precipitation of rhodium and iridium was separated from silver and other impurity elements through filtration when it was hot. The precipitates containing iridium and rhodium were effectively separated from silver and other impurity elements. The precipitate of iridium and rhodium with filter film were transferred into a closed digestion tank and dissolved in 50% aqua regia. The contents of iridium and rhodium in the solution were directly determined by ICP-MS.

    RESULTS

    The conditions such as the ingredient of nickel sulphide fire assay, the concentration of hydrochloric acid, tellurium coprecipitation, the sealing digestion time and temperature were studied. The experimental results showed that the molten slag was acidic when the ratio of nickel to sulfur was 4∶1, and it could effectively capture the iridium and rhodium in the sample with good fluidity of molten slag and the separation effect of slag buckle. When the NiS beads were dissolved by 50% hydrochloric acid, the dissolution reaction of NiS beads was suitable and complete. The precipitation containing rhodium and iridium was separated from impurity elements and filtered when hot. The precipitation was sealed and digested by dilute aqua regia (1∶1) at 160℃ for 2-3h. The possible MS interference was eliminated by selecting a suitable determination isotope. The 185Re was selected as the internal standard of 103Rh and 203Tl as the internal standard of 193Ir to eliminate the effect of signal drift, the results of iridium and rhodium had high precision and accuracy. The standard solution series of iridium and rhodium were determined under the optimized experimental conditions. The results indicated that the mass concentration of iridium and rhodium in the range of 10-100μg/L were linear to the ratio of the intensity of iridium and rhodium to the internal standard mass spectrometry. The calibration curves of iridium and rhodium were y=36674.6x+8264.7 and y=45686.7x+288.6, respectively, and the linear correlation coefficient (r) of calibration curves of iridium and rhodium were more than 0.999. The detection limits for iridium and rhodium were 0.007μg/L and 0.011μg/L, respectively, and the lower limits of detection were 0.024μg/L and 0.038μg/L, respectively. The content results of rhodium and iridium in 8 actual samples with the method showed that, the relative standard deviation (RSD, n=7) was between 1.40% and 4.57%, and the recovery was in the range of 95.00% to 103.65%.

    CONCLUSIONS

    The method has high efficiency and accuracy and can meet the detection requirements of copper anode slime samples.

  • [1]
    王甜甜, 郭晓瑞, 毛香菊, 等. 锡试金富集-微波消解-石墨炉原子吸收光谱法测定地球化学样品中痕量铑和铱[J]. 冶金分析, 2021, 41(9): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202109014.htm

    Wang T T, Guo X R, Mao X J, et al. Determination of trace rhodium and iridium in geochemical samples by graphite furnace atomic absorption spectrometry with tin fire assay and microwave digestion[J]. Metallurgical Analysis, 2021, 41(9): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202109014.htm
    [2]
    张金矿, 于亚辉, 陈浩凤, 等. 密闭消解-ICP-MS法测定地质样品中的痕量铑和铱[J]. 贵金属, 2017, 38(4): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ201704011.htm

    Zhang J K, Yu Y H, Chen H F, et al. Sealed digestion and ICP-MS determination of trace Rh and Ir in geological samples[J]. Precious Metals, 2017, 38(4): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ201704011.htm
    [3]
    Amer A M. Processing of copper anodic-slimes for extraction of valuable metals[J]. Waste Management, 2003, 23(8): 763-770. doi: 10.1016/S0956-053X(03)00066-7
    [4]
    冯先进. 电感耦合等离子体质谱分析技术在国内矿石矿物分析中的应用[J]. 冶金分析, 2020, 40(6): 21-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006004.htm

    Feng X J. Application of inductively coupled plasma mass spectrometry for analysis of ore and mineral in China[J]. Metallurgical Analysis, 2020, 40(6): 21-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006004.htm
    [5]
    毛香菊, 刘璐, 肖芳, 等. 锍镍试金-微波消解-高分辨率连续光源石墨炉原子吸收光谱法测定岩石矿物中超痕量铂钯钌铑铱[J]. 冶金分析, 2020, 40(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202003001.htm

    Mao X J, Liu L, Xiao F, et al. Determination of ultra-trace platinum, palladium, ruthenium, rhodium and iridium in rocks and minerals by high resolution continuum source graphite furnace atomic absorption spectrometry with nickel sulfide fire assay enrichment and microwave digestion[J]. Metallurgical Analysis, 2020, 40(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202003001.htm
    [6]
    Ni W S, Mao X J, Zhang H L. Determination of ultra-trace platinum, palladium, ruthenium, rhodium, and iridium in rocks and minerals by inductively coupled-plasma mass spectrometry following nickel sulfide fire assay preconcentration and open mixed acid digestion[J]. Analytical Letters, 2019, 52(11): 1699-1710. doi: 10.1080/00032719.2019.1566348
    [7]
    Zhang G, Tian M. A rapid and practical strategy for the determination of platinum, palladium, ruthenium, rhodium, iridium and gold in large amounts of ultrabasic rock by inductively coupled plasma optical emission spectrometry combined with ultrasound extraction[J]. Optics & Spectroscopy, 2015, 118(4): 513-518.
    [8]
    毛香菊, 肖芳, 刘璐, 等. 锍镍试金-高分辨率连续光源石墨炉原子吸收光谱法测定铬铁矿中铂族元素[J]. 冶金分析, 2020, 40(7): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007009.htm

    Mao X J, Xiao F, Liu L, et al. Determination of platinum group elements in chromite by nickel sulfide fire assay-high resolution continuum source graphite furnace atomic absorption spectrometry[J]. Metallurgical Analysis, 2020, 40(7): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007009.htm
    [9]
    熊方祥, 杨炳红, 符招弟, 等. 镍锍试金-铝共熔-电感耦合等离子体发射光谱(ICP-OES)法测定废催化剂中铑铱钌[J]. 中国无机分析化学, 2022, 12(2): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202202012.htm

    Xiong F X, Yang B H, Fu Z D, et al. Determination of rhodium, iridium and ruthenium in spent catalystss by inductively coupled plasma emission optical spectrometry with nickel sulphide fire-assay and aluminum eutectic[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(2): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX202202012.htm
    [10]
    程志炎, 李鼎, 寇勇强, 等. 锂盐-锍镍试金-等离子质谱法测定黑色页岩中铂族元素[J]. 化学分析计量, 2020, 29(3): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202003014.htm

    Cheng Z Y, Li D, Kou Y Q, et al. Determination of platinum group elements in black shale by inductively coupled plasma-mass spectrometry with lithium salt-nickel sulphide fire-assay[J]. Chemical Analysis and Meterage, 2020, 29(3): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202003014.htm
    [11]
    蔡树型, 黄超. 贵金属分析[M]. 北京: 冶金工业出版社, 1984: 38-40.

    Cai S X, Huang C. Analysis of precious metals[M]. Beijing: Metallurgical Industry Press, 1984: 38-40.
    [12]
    施意华, 靳晓珠, 熊传信, 等. 锍镍试金富集-等离子质谱法测定地质样品中的金铂钯铑铱钌[J]. 矿产与地质, 2009, 23(1): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200901020.htm

    Shi Y H, Ji X Z, Xiong C X, et al. Determination of Au, Pt, Pd, Rh, Ir and Ru in geological samples by sulfonium nickel assaying enrichment with ICP-MS method[J]. Mineral Resources and Geology, 2009, 23(1): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD200901020.htm
    [13]
    刘向磊, 孙文军, 文田耀, 等. 地质样品中贵金属分析方法现状及展望[J]. 冶金分析, 2022, 42(12): 23-35.

    Liu X L, Sun W J, Wen T Y, et al. Status and prospect of analytical methods for precious metal elements in geological samples[J]. Metallurgical Analysis, 2022, 42(12): 23-35.
    [14]
    王烨, 于亚辉, 王琳, 等. 地质样品中贵金属元素的预处理方法研究进展[J]. 岩矿测试, 2020, 39(1): 15-29. doi: 10.15898/j.cnki.11-2131/td.201905160064

    Wang Y, Yu Y H, Wang L, et al. Research progress on pretreatment methods for analysis of precious metal elements in geological samples[J]. Rock and Mineral Analysis, 2020, 39(1): 15-29. doi: 10.15898/j.cnki.11-2131/td.201905160064
    [15]
    郭家凡, 来新泽, 王琳, 等. 火试金反应原理及熔渣影响因素探究[J]. 冶金分析, 2022, 42(12): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202212001.htm

    Guo J F, Lai X Z, Wang L, et al. The reaction principle of fire assay and discussion on the influencing factors of slag[J]. Metallurgical Analysis, 2022, 42(12): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202212001.htm
    [16]
    张彦斌, 程忠洲, 李华. 锍试金富集-电感耦合等离子体质谱法测定地质样品中铂钯铑铱[J]. 冶金分析, 2006, 26(4): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200604004.htm

    Zhang Y B, Cheng Z Z, Li H. Determination of platinum, palladium, rhodium and iridium in geological samples by inductively coupled plasma-mass spectrometry after the preconcentration with nickel sulphide fire assay[J]. Metallurgical Analysis, 2006, 26(4): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200604004.htm
    [17]
    赵素利, 张欣, 李曼, 等. 锍镍试金-电感耦合等离子体质谱法测定硫铁矿中铂族元素[J]. 岩矿测试, 2011, 30(4): 412-415. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110405

    Zhao S L, Zhang X, Li M, et al. Determination of platinum group elements in pyrite samples by inductively coupled plasma-mass spectrometry with nickel sulphide fire assay[J]. Rock and Mineral Analysis, 2011, 30(4): 412-415. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110405
    [18]
    Li X L, Ebihara M. Determination of all platinum-group elements in mantle-derived xenoliths by neuton activation analysis with NiS fire-assay preconcentration[J]. Journal of Radioanalytical and Nuclear Chemistry, 2003, 255(1): 131-135.
    [19]
    沈宇, 张尼, 高小红, 等. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷[J]. 岩矿测试, 2014, 33(5): 649-654. http://www.ykcs.ac.cn/cn/article/id/a0203e2d-3752-4d6d-b752-26adcf61c413

    Shen Y, Zhang N, Gao X H, et al. Determination of vanadium-chromium-nickel-germanium-germanium arsenic in geochemical samples by microwave digestion inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(5): 649-654. http://www.ykcs.ac.cn/cn/article/id/a0203e2d-3752-4d6d-b752-26adcf61c413
    [20]
    石贵勇, 孙晓明, 张燕, 等. 锍镍试金富集-等离子体质谱法测定煌斑岩中铂族元素[J]. 岩矿测试, 2008, 27(4): 241-244. http://www.ykcs.ac.cn/cn/article/id/ykcs_20080486

    Shi G Y, Sun X M, Zhang Y, et al. Determination of platinum group elements in Lamprophyre sample by nickel sulfide fire assay-inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2008, 27(4): 241-244. http://www.ykcs.ac.cn/cn/article/id/ykcs_20080486
    [21]
    宋小年, 冯天培. 电感耦合等离子体发射光谱法测定高纯金属锡中痕量杂质元素[J]. 岩矿测试, 2006, 25(3): 282-284. http://www.ykcs.ac.cn/cn/article/id/ykcs_20060390

    Song X N, Feng T P. Determination of trace impurity elements in high purity tin metal by inductively coupled plasma emission spectrometry[J]. Rock and Mineral Analysis, 2006, 25(3): 282-284. http://www.ykcs.ac.cn/cn/article/id/ykcs_20060390
    [22]
    胡圣虹, 陈爱芳, 林守麟, 等. 地质样品中40个微量、痕量、超痕量元素的ICP-MS分析研究[J]. 地球科学, 2000, 25(2): 186-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002014.htm

    Hu S H, Chen A F, Lin S L, et al. ICP-MS analysis of 40 trace, trace and ultra trace elements in geological samples[J]. Earth Science, 2000, 25(2): 186-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002014.htm
    [23]
    Schonberg G. Simultaneous determination of thirty-seven trace elements in twenty-eight international rock standards by ICP-MS[J]. Geostandards and Geoanalytical Research, 1993, 17(1): 81-97.
    [24]
    王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085

    Wang J H, Li Z H, Yang F, et al. Simultaneous determination of 48 elements in marine sediments by ICP-MS with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315. doi: 10.15898/j.cnki.11-2131/td.202006050085
    [25]
    姚慧, 王阳, 杨惠玲. 超级微波消解电感耦合等离子体质谱法测定车用陶瓷催化剂中铂、钯、铑[J]. 化学分析计量, 2021, 30(2): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202102011.htm

    Yao H, Wang Y, Yang H L. Determination of Pt, Pd, Rh in automotive ceramic catalyst by super microwave digestion inductively coupled plasma mass spectrometry[J]. Chemical Analysis and Meterage, 2021, 30(2): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202102011.htm
    [26]
    刘芳美, 赖秋祥, 巫贞祥, 等. 密闭消解-电感耦合等离子体原子发射光谱法测定铂钯精矿中铜金铂钯硒碲铋铱铑[J]. 冶金分析, 2021, 41(6): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202106015.htm

    Liu F M, Lai Q X, Wu Z X, et al. Determination of copper, gold, platinum, palladium, selenium, tellurium, bismuth, iridium and rhodium in platinum and palladium concentrates by inductive plasma atomic emission spectrometry with sealed digestion[J]. Metallurgical Analysis, 2021, 41(6): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202106015.htm
    [27]
    刘娟, 庞文林, 朱红波, 等. ICP-OES法测定石油重整废催化剂中的铂、铱量[J]. 湖南有色金属, 2019, 35(6): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201906017.htm

    Liu J, Pang W L, Zhu H B, et al. Determination of Pt and Ir in petroleum reforming waste catalyst by ICP-OES[J]. Hunan Nonferrous Metals, 2019, 35(6): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYJ201906017.htm
  • Cited by

    Periodical cited type(4)

    1. 尘乂,李龙国,白婷,陈猛,黄滟淳,傅斌,李乃稳. 沱江流域成都段水/沉积物污染现状评价与相关性分析. 环境工程. 2024(07): 144-152 .
    2. 柳强,张鹏,史箴,张秋英,张丹,周淼,李发东. 三峡库区上游沱江流域总磷浓度时空变化特性及影响因素分析. 环境工程技术学报. 2022(02): 459-467 .
    3. 刘丹丹,乔琦,李雪迎,张玥,白璐. 沱江流域总磷空间排放特征及影响因素分析. 环境工程技术学报. 2022(02): 449-458 .
    4. 肖洋,李一彤,张涛涛,沈菲. 上覆水磷浓度对沉积物孔隙水中磷垂向分布的影响. 水资源与水工程学报. 2021(04): 24-28+37 .

    Other cited types(7)

Catalog

    Article views (175) PDF downloads (55) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return