Citation: | Duojiweise, Suolangciren, Pingcuolangjie, Dawalamu, Luosangwangdui, YU Le. Geochemical Characteristics and Influencing Factors of Soil Selenium in Longzi County, Tibet Autonomous Region[J]. Rock and Mineral Analysis, 2023, 42(1): 177-191. DOI: 10.15898/j.cnki.11-2131/td.202204240087 |
Selenium (Se) is one of the essential trace elements in the human body, which has many biological functions. Insufficient or excessive intake of Se will cause a series of diseases. The trace element Se in the human or animal body cannot be synthesized by itself, but can only be supplemented from external food. Se in food, especially in plant food, mainly comes from soil. Therefore, Se in soil is closely related to human health and animal growth. China is a country lacking in soil Se content, especially in Tibet. The background value of soil Se in Tibet is significantly lower than that of surface soil in China. Therefore, local diseases such as Kashin-Beck disease are common in some areas of Tibet due to long-term insufficient intake of selenium. It is of great significance to investigate the distribution characteristic of soil Se content, delineate the distribution area of selenium-enriched soil resources and determine the influencing factors of soil Se content for promoting the development and utilization of selenium-enriched land resources, develop Se-enriched industries and prevent local diseases. This will also provide reference data for the research of soil Se background value.
In recent years, it has been a hot topic to investigate the content of Se in soil, to delineate selenium-enriched soil resources and to develop and utilize them. Tibet is the main part of the Qinghai—Tibet Plateau, which has complex and diverse soil parent materials and soil forming processes, forming unique alpine soil types. In addition, Tibet is one of the areas with the least influence of human activities and is the ideal place for environmental geochemistry research. However, due to many factors such as natural geographical location and climate, the research data of soil element geochemistry in Tibet is very limited, and research data of soil Se is rare. Thus, the characteristics, distribution and influencing factors of soil Se content in the study area were studied, to provide a basis for the exploitation and utilization of selenium-enriched land resources, the development of selenium-enriched industry and the prevention of endemic diseases in the frontier ethnic areas of the plateau.
The collection, processing and analysis of samples of surface soil, vertical profile and rock profile were carried out. The samples were collected from the key farming area of Longzi County, Shannan, Tibet Autonomous Region. The surface soil samples were collected in a grid pattern from the third national land survey map spot. The soil sampling points were mainly arranged on agricultural plots, with an average sampling density of 7.9 points/km2. A total of 1587 surface soil samples were collected, with a study area of 200km2. The sampling method for surface soil samples was determined according to the actual plot shape. When the plot was square, "X" type sampling was adopted, and when the plot was rectangular, "S" type sampling was adopted. When sampling cultivated land, 5 sub-sampling points were equally combined into 1 sample; for grassland and woodland sampling, 3-4 sub-sampling points were equally combined into one sample. The samples collected at each sub-sampling point were crushed, small stones, roots and other sundries picked out, and after fully mixing, more than 1000g samples reserved and put into sample bags by quartering method. In the study area, 10 vertical soil profiles were set up, and the sampling interval was 1 sample/20cm. The depth of all the profiles was 160cm except for the profile CM01, which was 140cm deep. In addition, a rock profile was set in the study area, and fresh rock samples were collected. The same kind of rock was collected in a multi-point mode and combined into a sample, with the sample weight of 300g. The surface soil samples, and vertical profile samples collected were naturally dried without pollution, and sieved by -10 mesh nylon sieve, then divided by quartering method, weighed and put into sample bottles and sent to laboratory for analysis. Soil samples were analyzed for Se, available Se, organic matter, pH, N, P, available N, available P, available K, etc. Rock samples were analyzed for Se. The contents of Se and available Se were determined by atomic fluorescence spectrometry (AFS), organic matter. Available nitrogen and cation exchange capacity (CEC) were determined by volumetric method (VOL), pH value was determined by ion selective electrode method (ISE), N content was determined by elemental analyzer method (EA), and available P, available K, P and TFe2O3 were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The detection limit, accuracy, precision and reporting rate of the analytical method adopted all met the specification requirements, and the sample analysis quality was reliable.
The results of the content of Se in soil and its influence factors, showed that: (1) The Se content in the topsoil of the study area ranged from 0.14 to 1.51mg/kg, with a median of 0.44mg/kg, which was 2.9 times as high as the average value of Tibet (0.15mg/kg) and 1.5 times as high as the average value of China (0.26mg/kg). The content of available Se in the topsoil ranged from 0.8 to 26.8μg/kg, with a median of 9.2μg/kg. The content of available Se in topsoil was 0.21%-5.79% of total Se. (2) Se-enriched (Se≥0.4mg/kg) soil resource area was 154.53km2, which accounted for 77.25% of the total area. Se-enriched soil was mainly distributed in Longzi Town and Ridang Town. There was no excess or deficiency of soil Se in the study area, which indicated that Se-enriched soil was continuous and had the potential to develop Se-enriched soil resources. (3) The geological background was closely related to the Se content in the soil. The Se rich soil was mainly controlled by the distribution of the Nieru Formation (T3
The content of Se in the topsoil of the study area is high, and 77.25% of the study area is in line with the standard of Se-enriched soil. In that soil, the Se content is mainly affected by the parent materials, especially the sericite slate and shale in the Nieru Formation (T3