Citation: | HU Tingting, CHEN Jiawei. A Review on Adsorption and Transport of Microplastics in Soil and the Effect of Ageing on Environmental Behavior of Pollutants[J]. Rock and Mineral Analysis, 2022, 41(3): 353-363. DOI: 10.15898/j.cnki.11-2131/td.202202180024 |
Microplastics, defined as the plastic material with a size of < 5mm, have been widely attracting attention due to the high mobility and strong affinity toward pollutants. Microplastics concentrate in soil through plastic film breakage, landfill and atmospheric deposition. Microplastics can migrate downward in soil, and adsorb co-existing pollutants. The ageing of microplastics due to surface geochemical processes, would result in a great threat to the environment.
To comprehensively understand the environmental behavior of microplastics and their potential environmental risks.
The key factors controlling vertical transport of microplastics in soil were summarized, including microplastics properties such as the size, shape and functional groups, and soil properties such as the porosity, organic matter and soil minerals. The adsorption of organic pollutants and heavy metals on microplastics and the effect of ageing were analyzed.
The results obtained from recent studies showed that: (1) The transportation of microplastics can be affected by their inherent properties and the soil environments. (2) Microplastics can adsorb heavy metals and organic pollutants, and co-transport in soil, which would change the environmental fate and bioavailability of pollutants. (3) The ageing process can impact the microplastics mobility, adsorption capacity, and the release of the associated contaminants derived from the microplastics. The release of endogenous organics phthalate esters from aged microplastics could reach 50.3-6660ng/g, and that of heavy metal Pb2+ reach 5.1-81.4μg/g.
In view of the current research and existing problems, this review gives guidance on microplastics transport, adsorption and ageing effect for future studies. (1) The interaction mechanisms between microplastics and pollutants should be elucidated under multi-factor coupling conditions in soil, especially for the influence of different soil types and environmental factors on the adsorption/desorption/migration of pollutants on the microplastics. (2) The effects of different ageing processes on the properties and environmental behavior of the microplastics should be studied by experimental simulation. (3) In order to uncover the effects of aging on the release behavior of endogenous pollutants, the study on the release of endogenous pollutants from microplastics in different ageing environment should be strengthened.
[1] |
Geyer R. Production, use, and fate of synthetic polymers[M]//Plastic waste and recycling. Academic Press, 2020: 13-32.
|
[2] |
Sutherland W J, Clout M, Isabelle M, et al. A horizon scan of global conservation issues for 2010[J]. Trends Ecology & Evolution, 2010, 25(1): 1-7.
|
[3] |
Abuwatfa W H, AI-Muqbel D, AI-Othman A, et al. Insights into the removal of microplastics from water using biochar in the era of COVID-19: A mini review[J]. Case Studies in Chemical and Environmental Engineering, 2021, 4: 100151. doi: 10.1016/j.cscee.2021.100151
|
[4] |
Padervand M, Lichtfouse E, Robert D, et al. Removal of microplastics from the environment: A review[J]. Environmental Chemistry Letters, 2020, 18(3): 807-828. doi: 10.1007/s10311-020-00983-1
|
[5] |
Akdoan Z, Guven B. Microplastics in the environment: A critical review of current understanding and identification of future research needs[J]. Environmental Pollution, 2019, 254 (Part A): 113011.
|
[6] |
Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586: 127-141. doi: 10.1016/j.scitotenv.2017.01.190
|
[7] |
Lahive E, Walton A, Horton A A, et al. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure[J]. Environmental Pollution, 2019, 255: 113174. doi: 10.1016/j.envpol.2019.113174
|
[8] |
Jiang X F, Chen H, Liao Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J]. Environmental Pollution, 2019, 250: 831. doi: 10.1016/j.envpol.2019.04.055
|
[9] |
Klein M, Fischer E K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany[J]. Science of the Total Environment, 2019, 685: 96-103. doi: 10.1016/j.scitotenv.2019.05.405
|
[10] |
Siegfried M, Koelmans A A, Besseling E, et al. Export of microplastics from land to sea: A modelling approach[J]. Water Research, 2017, 127: 249-257. doi: 10.1016/j.watres.2017.10.011
|
[11] |
Rochman C M. Microplastics research-from sink to source[J]. Science, 2018, 360(6384): 28-29. doi: 10.1126/science.aar7734
|
[12] |
郝爱红, 赵保卫, 张建, 等. 土壤中微塑料污染现状及其生态风险研究进展[J]. 环境化学, 2021, 40(4): 1100-1111. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202104016.htm
Hao A H, Zhao B W, Zhang J, et al. Research progress on pollution status and ecological risk of microplastics in soil[J]. Environmental Chemistry, 2021, 40(4): 1100-1111. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202104016.htm
|
[13] |
杨杰, 李连祯, 周倩, 等. 土壤环境中微塑料污染: 来源、过程及风险[J]. 土壤学报, 2021, 58(2): 281-298. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202102002.htm
Yang J, Li L Z, Zhou Q, et al. Microplastics contamination of soil environment: Sources, processes and risks[J]. Acta Pedologica Sinica, 2021, 58(2): 281-298. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202102002.htm
|
[14] |
Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction[J]. Environmental Science & Technology, 2016, 50(11): 5774-5780.
|
[15] |
Wang J, Li J Y, Liu S T, et al. Distinct microplastic distributions in soils of different land-use types: A case study of Chinese farmlands[J]. Environmental Pollution, 2021, 269: 116199. doi: 10.1016/j.envpol.2020.116199
|
[16] |
Ee-Ling N, Esperanza H L, Simon M E, et al. An overview of microplastic and nanoplastic pollution in agroecosystems[J]. Science of the Total Environment, 2018, 627: 1377-1388. doi: 10.1016/j.scitotenv.2018.01.341
|
[17] |
Rillig M C, Ingraffia R, de Souza Machado A A. Micro-plastic incorporation into soil in agroecosystems[J]. Frontiers in Plant Science, 2017, 8: 1805. doi: 10.3389/fpls.2017.01805
|
[18] |
董姝楠, 夏继红, 王为木, 等. 土壤-地下水中微塑料迁移的影响因素及机制研究进展[J]. 农业工程学报, 2020, 36(14): 1-8. doi: 10.11975/j.issn.1002-6819.2020.14.001
Dong S N, Xia J H, Wang W M, et al. Review on impact factors and mechanisms of microplastic transport in soil and groundwater[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 1-8. doi: 10.11975/j.issn.1002-6819.2020.14.001
|
[19] |
徐笠, 李海霞, 韩丽花, 等. 微塑料对典型污染物吸附解吸的研究进展[J]. 中国生态农业学报, 2021, 29(6): 961-969. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202106003.htm
Xu L, Li H X, Han L H, et al. Research progress on the adsorption and desorption of typical pollutants on microplastics[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 961-969. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202106003.htm
|
[20] |
Lwanga E H, Vega J M, Quej V K, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J]. Scientific Reports, 2017, 7(1): 1-7. doi: 10.1038/s41598-016-0028-x
|
[21] |
McDougall L, Thomson L, Brand S, et al. Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices[J]. Science of the Total Environment, 2022, 808: 152071. doi: 10.1016/j.scitotenv.2021.152071
|
[22] |
Wang T, Ma Y N, Ji R. Aging processes of polyethylene mulch films and preparation of microplastics with environmental characteristics[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107: 736-740. doi: 10.1007/s00128-020-02975-x
|
[23] |
Xu S Y, Zhang H, He P J, et al. Leaching behaviour of bisphenol A from municipal solid waste under landfill environment[J]. Environmental Technology, 2011, 32(11): 1269-1277. doi: 10.1080/09593330.2010.535175
|
[24] |
Roy P K, Hakkarainen M, Varma I K, et al. Degradable polyethylene: Fantasy or reality[J]. Environmental Science & Technology, 2011, 45(10): 4217-4227.
|
[25] |
Luo H W, Zhao Y Y, Li Y, et al. Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids[J]. Science of the Total Environment, 2020, 714: 136862. doi: 10.1016/j.scitotenv.2020.136862
|
[26] |
Dong Z Q, Qiu Y P, Zhang W, et al. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater[J]. Water Research, 2018, 143(1): 518-526.
|
[27] |
Zhang G S, Zhang F X, Li X T. Effects of polyester micro-fibers on soil physical properties: Perception from a field and a pot experiment[J]. Science of the Total Environment, 2019, 670: 1-7. doi: 10.1016/j.scitotenv.2019.03.149
|
[28] |
Dong Z Q, Zhu L, Zhang W, et al. Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand[J]. Environmental Pollution, 2019, 255(1): 113177.
|
[29] |
Liu J, Zhang T, Tian L L, et al. Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand[J]. Environmental Science & Technology, 2019, 53(10): 5805-5815.
|
[30] |
Zhang M, Xu L H. Transport of micro-and nanoplastics in the environment: Trojan-Horse effect for organic contaminants[J]. Environmental Science and Technology, 2020, 52(5): 1-37.
|
[31] |
Blasing M, Amelung W. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612(1): 422-435.
|
[32] |
Ren Z F, Gui X Y, Xu X Y, et al. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminant—A critical review[J]. Journal of Hazardous Materials, 2021, 419: 126455. doi: 10.1016/j.jhazmat.2021.126455
|
[33] |
Yan X Y, Yang X Y, Tang Z, et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes[J]. Environmental Pollution, 2020, 262: 114270. doi: 10.1016/j.envpol.2020.114270
|
[34] |
Wu X L, Lyu X Y, Li Z Y, et al. Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type[J]. Science of the Total Environment, 2020, 707: 136065. doi: 10.1016/j.scitotenv.2019.136065
|
[35] |
Hou J, Xu X Y, Lan L, et al. Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors[J]. Environmental Pollution, 2020, 263: 114499. doi: 10.1016/j.envpol.2020.114499
|
[36] |
Lwanga E H, Gertsen H, Gooren H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220: 523-531. doi: 10.1016/j.envpol.2016.09.096
|
[37] |
Rillig M C, Ziersch L, Hempel S. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7(1): 1-7. doi: 10.1038/s41598-016-0028-x
|
[38] |
Maaβ S, Daphi D, Lehmann A. Transport of microplastics by two collembolan species[J]. Environmental Pollution, 2017, 225: 456-459. doi: 10.1016/j.envpol.2017.03.009
|
[39] |
Zhu D, Bi Q F, Xiang Q, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida[J]. Environmental Pollution, 2018, 235: 150-154. doi: 10.1016/j.envpol.2017.12.058
|
[40] |
Chae Y, An Y J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review[J]. Environmental Pollution, 2018, 240: 387-395. doi: 10.1016/j.envpol.2018.05.008
|
[41] |
贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试, 2021, 40(3): 384-396. doi: 10.15898/j.cnki.11-2131/td.202101260016
He L, Wu C, Zeng D M, et al. Distribution of heavy metals and ecological risk of soils in the typical geological background region of southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 384-396. doi: 10.15898/j.cnki.11-2131/td.202101260016
|
[42] |
Wang Y, Wang X J, Li Y, et al. Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics[J]. Chemical Engineering Journal, 2020, 392: 123808. doi: 10.1016/j.cej.2019.123808
|
[43] |
Dong Y M, Gao M L, Song Z G, et al. Adsorption mechanism of As(Ⅲ) on polytetrafluoroethylene particles of different size[J]. Environmental Pollution, 2019, 254(Part A): 112950.
|
[44] |
Zhou Y F, Yang Y Y, Liu G H, et al. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene[J]. Water Research, 2020, 184: 116209. doi: 10.1016/j.watres.2020.116209
|
[45] |
Hodson M E, Duffus-Hodson C A, Clark A, et al. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science & Technology, 2017, 51(8): 4714-4721.
|
[46] |
Zhang S W, Han B, Sun Y H, et al. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil[J]. Journal of Hazardous Materials, 2019, 388: 121775.
|
[47] |
Ma X Y, Zhou X H, Zhao M J, et al. Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions[J]. Frontiers of Environmental Science & Engineering, 2022, 16(1): 1-12.
|
[48] |
Yu H Y, Liu C, Zhu J, et al. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value[J]. Environmental Pollution, 2016, 209(15): 38-45.
|
[49] |
刘冬, 贺灵, 文雪琴, 等. 金衢盆地典型地区土壤-稻米重金属含量及土壤酸碱度的影响研究[J]. 岩矿测试, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.202011100139
Liu D, He L, Wen X Q, et al. Concentration of heavy metals in soil and rice and its influence by soil pH in Jinqu Basin[J]. Rock and Mineral Analysis, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.202011100139
|
[50] |
Liu H F, Yang X M, Liu G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185: 907-917. doi: 10.1016/j.chemosphere.2017.07.064
|
[51] |
曹宁, 孙彬彬, 曾道明, 等. 珠江三角洲西部典型乡镇稻米与根系土重金属元素含量关系研究[J]. 岩矿测试, 2020, 39(5): 739-752. doi: 10.15898/j.cnki.11-2131/td.201912240177
Cao N, Sun B B, Zeng D M, et al. Study on the relationship between the contents of heavy metals in rice and roots soils in typical townships in the western Pearl River Delta[J]. Rock and Mineral Analysis, 2020, 39(5): 739-752. doi: 10.15898/j.cnki.11-2131/td.201912240177
|
[52] |
陈雅兰, 孙可, 高博. 微塑料吸附机制研究进展[J]. 环境化学, 2021, 40(8): 2271-2287. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202108002.htm
Chen Y L, Sun K, Gao B. Sorption behavior, mechanisms, and models of organic pollutants and metals on microplastics: A review[J]. Environmental Chemistry, 2021, 40(8): 2271-2287. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202108002.htm
|
[53] |
Fu L N, Li J, Wang G Y, et al. Adsorption behavior of organic pollutants on microplastics[J]. Ecotoxicology and Environmental Safety, 2021, 217: 112207. doi: 10.1016/j.ecoenv.2021.112207
|
[54] |
Šunta U, Prosenc F, Trebše P, et al. Adsorption of ace-tamiprid, chlorantraniliprole and flubendiamide on different type of microplastics present in alluvial soil[J]. Chemosphere, 2020, 261: 127762. doi: 10.1016/j.chemosphere.2020.127762
|
[55] |
Chen X, Gu X N, Bao L J, et al. Comparison of adsorption and desorption of triclosan between microplastics and soil particles[J]. Chemosphere, 2021, 263: 127947. doi: 10.1016/j.chemosphere.2020.127947
|
[56] |
Hu B Y, Li Y X, Jiang L S, et al. Influence of micro-plastics occurrence on the adsorption of 17β-estradiol in soil[J]. Journal of Hazardous Materials, 2020, 400: 123325. doi: 10.1016/j.jhazmat.2020.123325
|
[57] |
Wu P F, Cai Z W, Jin H B, et al. Adsorption mechanisms of five bisphenol analogues on PVC microplastics[J]. Science of the Total Environment, 2018, 650: 671-678.
|
[58] |
Zhu Y F, Li X X, Wang L P, et al. Adsorption of BDE-209 to polyethylene microplastics: Effect of microplastics property and metal ions[J]. Water, Air & Soil Pollution, 2021, 232(12): 1-10.
|
[59] |
Andrady A L. The plastic in microplastics: A review[J]. Marine Pollution Bulletin, 2017, 119(1): 12-22. doi: 10.1016/j.marpolbul.2017.01.082
|
[60] |
Jahnke A, Arp H P H, Escher B I, et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment[J]. Environmental Science & Technology Letters, 2017, 4(3): 85-90.
|
[61] |
Duan J J, Bolan N, Li Y, et al. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments[J]. Water Research, 2021, 196: 117011. doi: 10.1016/j.watres.2021.117011
|
[62] |
Ren Z F, Gui X Y, Wei Y Q, et al. Chemical and photo-initiated aging enhances transport risk of microplastics in saturated soils: Key factors, mechanisms, and modeling[J]. Water Research, 2021, 202: 117407. doi: 10.1016/j.watres.2021.117407
|
[63] |
Wu J Y, Jiang R F, Lin W, et al. Effect of salinity and humic acid on the aggregation and toxicity of polystyrene nanoplastics with different functional groups and charges[J]. Environmental Pollution, 2019, 245: 836-843. doi: 10.1016/j.envpol.2018.11.055
|
[64] |
Ma J, Qiu Y, Zhao J Y, et al. Effect of agricultural organic inputs on nanoplastics transport in saturated goethite-coated porous media: Particle size selectivity and role of dissolved organic matter[J]. Environmental Science & Technology, 2022, 56(6): 3524-3534.
|
[65] |
Li M, Zhang X W, Yi K X, et al. Transport and deposition of microplastic particles in saturated porous media: Co-effects of clay particles and natural organic matter[J]. Environmental Pollution, 2021, 287: 117585. doi: 10.1016/j.envpol.2021.117585
|
[66] |
Li M, He L, Zhang M Y, et al. Cotransport and deposition of iron oxides with different-sized plastic particles in saturated quartz sand[J]. Environmental Science & Technology, 2019, 53(7): 3547-3557.
|
[67] |
Li M, He L, Zhang X W, et al. Different surface charged plastic particles have different cotransport behaviors with kaolinite particles in porous media[J]. Environmental Pollution, 2020, 267: 115534. doi: 10.1016/j.envpol.2020.115534
|
[68] |
Chen S S, Yang Y T, Jing X Y, et al. Enhanced aging of polystyrene microplastics in sediments under alternating anoxic-oxic conditions[J]. Water Research, 2021, 207: 117782. doi: 10.1016/j.watres.2021.117782
|
[69] |
Alimi O S, Farner J M, Tufenkji N. Exposure of nano-plastics to freeze-thaw leads to aggregation and reduced transport in model groundwater environments[J]. Water Research, 2021, 189: 116533. doi: 10.1016/j.watres.2020.116533
|
[70] |
Tong M P, He L, Rong H F, et al. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment[J]. Water Research, 2020, 169: 115284-115294. doi: 10.1016/j.watres.2019.115284
|
[71] |
O'Connor D, Pan S, Shen Z, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environment Pollution, 2019, 249: 527-534. doi: 10.1016/j.envpol.2019.03.092
|
[72] |
Lang M F, Yu X Q, Liu J H, et al. Fenton aging signi-ficantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 2020, 722: 137762. doi: 10.1016/j.scitotenv.2020.137762
|
[73] |
Jiang Z S, Huang L L, Fan Y X, et al. Contrasting effects of microplastic aging upon the adsorption of sulfonamides and its mechanism[J]. Chemical Engineering Journal, 2022, 430(3): 132939.
|
[74] |
Liu G Z, Zhu Z L, Yang Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater[J]. Environmental Pollution, 2019, 246: 26-33. doi: 10.1016/j.envpol.2018.11.100
|
[75] |
Prata J C, da Costa J P, Lopes I, et al. A one health perspective of the impacts of microplastics on animal, human and environmental health[J]. Science of the Total Environment, 2020, 777: 146094.
|
[76] |
Hahladakis J N, Velis C A, Weber R, et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344: 179-199. doi: 10.1016/j.jhazmat.2017.10.014
|
[77] |
Hermabessiere L, Dehaut A, Paul-Pont I, et al. Occurrence and effects of plastic additives on marine environments and organisms: A review[J]. Chemosphere, 2017, 182: 781-793. doi: 10.1016/j.chemosphere.2017.05.096
|
[78] |
Luo H W, Li Y, Zhao Y Y, et al. Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics[J]. Environmental Pollution, 2020, 257: 113475. doi: 10.1016/j.envpol.2019.113475
|
[79] |
Rani M, Shim W J, Jang M, et al. Releasing of hexabro-mocyclododecanes from expanded polystyrenes in seawater-field and laboratory experiments[J]. Chemosphere, 2017, 185: 798-805. doi: 10.1016/j.chemosphere.2017.07.042
|
[80] |
Paluselli A, Fauvelle V, Galgani F, et al. Phthalate release from plastic fragments and degradation in seawater[J]. Environmental Science & Technology, 2019, 53(1): 166-175.
|
[81] |
Nakashima E, Isobe A, Kako S, et al. The potential of oceanic transport and onshore leaching of additive-derived lead by marine macro-plastic debris[J]. Marine Pollution Bulletin, 2016, 107(1): 333-339. doi: 10.1016/j.marpolbul.2016.03.038
|
[82] |
Zhan F Q, Zhang H J, Cao R, et al. Release and transformation of BTBPE during the thermal treatment of flame retardant ABS plastics[J]. Environmental Science & Technology, 2019, 53(1): 185-193.
|
[83] |
Cao Y R, Lin H J, Zhang K, et al. Microplastics: A major source of phthalate esters in aquatic environments[J]. Journal of Hazardous Materials, 2022, 432: 128731. doi: 10.1016/j.jhazmat.2022.128731
|
[84] |
Meng J, Xu B L, Liu F, et al. Effects of chemical and natural ageing on the release of potentially toxic metal additives in commercial PVC microplastics[J]. Chemosphere, 2021, 283(4): 131274.
|
1. |
张阳阳,王梦园,周伟,汪丹,闫加力. 调理剂对酸性富硒土壤改良效果的初步研究. 资源环境与工程. 2024(01): 34-39+91 .
![]() | |
2. |
李媛媛,焦洪鹏,冯先翠,曹鹏,江海燕,雷满奇. 施用硒内源调控剂对水稻吸收硒、镉和砷的影响. 中国稻米. 2024(02): 18-25 .
![]() | |
3. |
谭卓贤,杜建军,孙星,易琼,徐培智,张木. 石灰、磷酸盐及硅酸盐对土壤硒有效性及水稻累积硒的影响. 江苏农业学报. 2024(03): 450-456 .
![]() | |
4. |
覃惠松,蒋代华,黄雪娇,邓华为,黄金兰,王明释. 有机质对广西酸性富硒土中Se(Ⅳ)吸附解吸特性的影响. 土壤. 2023(02): 363-371 .
![]() | |
5. |
秦王武,邵树勋,夏勇,田弋夫,王大州,余德顺,林剑,林庆华. 水城茶园硒的地球化学特征及富硒茶开发探讨. 地球与环境. 2023(05): 527-536 .
![]() | |
6. |
余蕾,岳蕴辉,张朝青,李慧. 新疆气流床煤气化炉渣的特性研究及在砂质土壤改良中的应用. 现代化工. 2023(S2): 148-152 .
![]() | |
7. |
路丹,黄太庆,陈锦平,廖青,韦燕燕,邢颖,梁潘霞,潘丽萍,江泽普,刘永贤. 施用生物炭对红壤富硒区硒生物有效性的影响. 中国土壤与肥料. 2023(10): 118-126 .
![]() | |
8. |
高晴盈,胡允祝,张辉,陈静静,倪芝芝. 温州市西部山区耕地质量综合评价. 乡村科技. 2023(24): 144-149 .
![]() | |
9. |
杨谨铭,胡岗,范成五,罗沐欣键,秦松. 提高土壤硒生物有效性的技术措施研究进展. 安徽农业科学. 2022(01): 12-14 .
![]() | |
10. |
冯德庆,黄秀声,黄小云,王俊宏,韩海东,陈钟佃,罗涛. 富硒土壤施用特贝钙土壤调理剂对黑麦草产量和硒含量的影响. 黑龙江畜牧兽医. 2022(02): 102-106 .
![]() | |
11. |
李迎春,张磊,尚文郁. 粉末压片-X射线荧光光谱法分析富硒土壤样品中的硒及主次量元素. 岩矿测试. 2022(01): 145-152 .
![]() | |
12. |
次仁旺堆,多吉卫色,索朗次仁,尼玛次仁,边巴次仁,平措朗杰. 西藏山南市乃东区土壤硒分布特征及影响因素. 岩矿测试. 2022(03): 427-436 .
![]() | |
13. |
吴超,孙彬彬,成晓梦,周国华,贺灵,曾道明,梁倍源. 丘陵山区多目标区域地球化学调查不同成因表层土壤代表性研究——以浙江绍兴地区为例. 地质通报. 2022(09): 1539-1549 .
![]() | |
14. |
倪刚,胡承孝,李长印,蔡苗苗,赵小虎. 硒与重金属互作的植物根际过程研究进展. 中国农学通报. 2021(01): 78-83 .
![]() | |
15. |
刘冰权,沙珉,谢长瑜,周强强,魏星星,周梵. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素. 岩矿测试. 2021(05): 740-750 .
![]() | |
16. |
潘丽萍,谭骏,刘斌,邢颖,黄雁飞,陈锦平,刘永贤. 不同粒径贝壳粉对水稻吸收镉与硒的影响. 农业环境科学学报. 2021(10): 2134-2140 .
![]() | |
17. |
朱超,文美兰,刘攀峰,陈斌艳,鲍厚银,赵银强,陈昊,杨奕波. 桂林灵川县典型有机水稻田重金属元素分布特征及污染评价. 现代地质. 2021(05): 1433-1440 .
![]() | |
18. |
王锐,胡小兰,张永文,余飞,朱海山,李瑜. 重庆市主要农耕区土壤Cd生物有效性及影响因素. 环境科学. 2020(04): 1864-1870 .
![]() | |
19. |
刘道荣. 浙西丘陵区不同采样密度富硒土壤评价研究. 华东地质. 2020(02): 177-183 .
![]() | |
20. |
周国华. 富硒土地资源研究进展与评价方法. 岩矿测试. 2020(03): 319-336 .
![]() | |
21. |
王保欣,韦继康,余晓霞,胡荣荣. 浙江慈溪粮食主产区富硒土壤评价方法对比研究. 现代地质. 2020(04): 672-679 .
![]() | |
22. |
王锐,邓海,严明书,张永文,周皎,余飞,李瑜. 基于回归方程的硒元素生物有效性研究. 土壤通报. 2020(05): 1049-1055 .
![]() | |
23. |
张立,姜侠,崔玉军,窦智慧,李瑛,孙振伟. 松嫩平原吕大火房垂直剖面中硒赋存形态及影响因素分析. 地质与资源. 2020(06): 603-608+584 .
![]() | |
24. |
樊建新,曾宇,孙姣霞,潘瑾. 淹水过程中土壤硒的形态转化. 江苏农业科学. 2019(06): 279-283 .
![]() | |
25. |
王昌宇,张素荣,刘继红,邢怡,杨俊泉. 河北省饶阳县富锌、硒特色土地及其生态效应评价. 地质调查与研究. 2019(01): 49-56 .
![]() | |
26. |
许永东,夏曾润. 保水缓控释功能型复合肥的分析. 当代化工. 2019(07): 1531-1534 .
![]() | |
27. |
邢怡,张素荣,刘继红,王昌宇. 农作物根系土对农产品安全的影响分析——以保定东部地区为例. 地质调查与研究. 2019(03): 219-224+234 .
![]() | |
28. |
顾涛,赵信文,雷晓庆,黄长生,曾敏,刘学浩,王节涛. 珠江三角洲崖门镇地区水稻田土壤-植物系统中硒元素分布特征及迁移规律研究. 岩矿测试. 2019(05): 545-555 .
![]() | |
29. |
冯辉,张学君,张群,杜丽娜. 北京大清河流域生态涵养区富硒土壤资源分布特征和来源解析. 岩矿测试. 2019(06): 693-704 .
![]() | |
30. |
况琴,吴山,黄庭,吴代赦,向京. 生物质炭和钢渣对江西丰城典型富硒区土壤硒有效性的调控效果与机理研究. 岩矿测试. 2019(06): 705-714 .
![]() | |
31. |
王锐,余涛,杨忠芳,侯青叶,曾庆良,马宏宏. 富硒土壤硒生物有效性及影响因素研究. 长江流域资源与环境. 2018(07): 1647-1654 .
![]() | |
32. |
王峰,陈玉真,单睿阳,尤志明,陈常颂,臧春荣,余文权. 大田县茶园土壤和茶叶中硒含量及影响因素分析. 茶叶学报. 2018(03): 126-130 .
![]() |