Citation: | SHANG Wenyu, SUN Jingyi, XIE Manman, CEN Kuang, CAI Ze, ZHAN Nan, LING Yuan, SUN Qing. Py-GC/MS Analysis Method for Aliphatic Biomarker in Desert Lake Sediment and Its Application in Paleoclimatic Study[J]. Rock and Mineral Analysis, 2022, 41(5): 836-848. DOI: 10.15898/j.cnki.11-2131/td.202201120009 |
Methylene chain backbone compounds (MCCs) in lake sediments are sensitive to climate change, and changes in environmental conditions could promote the transformation of MCCs lipids between free and bound states, hence providing a series of biomarkers for paleoclimate reconstruction. In previous studies, free MCCs lipids were typically extracted by mixed solvents, bound MCCs lipids with chemical bonding or physical adsorption could not be obtained by organic solvent extraction, and the indicator information of the characteristics of bound components on paleoclimate change was missing.
To study the suitable analytical conditions for bound MCCs lipids, and establish proxy based on bound MCCs lipids to provide an effective tool for paleoclimate reconstruction of terrestrial ecosystems.
Optimized analytical method of pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) was established and used to evaluate the bound MCCs in typical Desert Lake sediment.
Total of 71 bound MCCs compounds were identified and analyzed based on fine characterization of organic matter composition in the sediments of the Yiheshariwusu Lake in Inner Mongolia. Pyrolysis temperature was the main factor affecting the distribution characteristics of bound MCCs in sediment. Low pyrolysis energy under 450℃ led to insufficient resolution of bound MCCs. At 550℃ and 650℃, total bound
Proxy ACL25-31 of bound
[1] |
Naafs B D A, Inglis G N, Blewett J, et al. The potential of biomarker proxies to trace climate, vegetation, and biogeochemical processes in peat: A review[J]. Global and Planetary Change, 2019, 179: 57-79. doi: 10.1016/j.gloplacha.2019.05.006
|
[2] |
Cranwell P A. Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment[J]. Organic Geochemistry, 1981, 3(3): 79-89. doi: 10.1016/0146-6380(81)90002-4
|
[3] |
Rielley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U.K. Ⅰ: Source correlation of leaf wax inputs to the sedimentary lipid record[J]. Organic Geochemistry, 1991, 17(6): 901-912. doi: 10.1016/0146-6380(91)90031-E
|
[4] |
Sun Q, Chu G Q, Liu M, et al. Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal[J]. Journal of Geophysical Research, 2011, 116(G1): 79-89.
|
[5] |
Chu G Q, Sun Q, Xie M M, et al. Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from northeastern China[J]. Quaternary Science Reviews, 2014, 102: 85-95. doi: 10.1016/j.quascirev.2014.08.008
|
[6] |
Jambrina-Enríquez M, Sachse D, Valero-Garcés B L. A deglaciation and Holocene biomarker-based recon-struction of climate and environmental variability in NW Iberian Peninsula: The Sanabria Lake sequence[J]. Journal of Paleolimnology, 2016, 56(1): 49-66. doi: 10.1007/s10933-016-9890-6
|
[7] |
Zhang Y, Meyers P A, Liu X, et al. Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China[J]. Quaternary Science Reviews, 2016, 152: 19-30. doi: 10.1016/j.quascirev.2016.09.016
|
[8] |
Yan Y, Zhao B, Xie L, et al. Trend reversal of soil n-alkane carbon preference index (CPI) along the precipitation gradient and its paleoclimatic implication[J]. Chemical Geology, 2021, 581: 1-10.
|
[9] |
Xie S, Nott C J, Avsejs L A, et al. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2004, 68(13): 2849-2862. doi: 10.1016/j.gca.2003.08.025
|
[10] |
Barakat A O, Rullk tter J. Extractable and bound fatty acids in core sediments from the N rdlinger Ries, southern Germany[J]. Fuel, 1995, 74(3): 416-425. doi: 10.1016/0016-2361(95)93476-T
|
[11] |
王江涛, 杨庶, 谭丽菊, 等. 浙江南部近海沉积物柱状样中脂类生物标志物的组成及形态分布[J]. 海洋学报, 2011, 33(5): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201105011.htm
Wang J T, Yang S, Tan L J, et al. Composition and form distribution of lipids biomarkers in a sediment core from southern coastal area of Zhejiang Province[J]. Marine Sciences, 2011, 33(5): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201105011.htm
|
[12] |
Kaal J, Lantes-Suárez O, Martínez Cortizas A, et al. How useful is pyrolysis-GC/MS for the assessment of molecular properties of organic matter in Archaeological Pottery Matrix? An exploratory case study from North-West Spain[J]. Archaeometry, 2014, 56: 187-207. doi: 10.1111/arcm.12057
|
[13] |
Li J, Chen Y, Yang H, et al. The correlation of feedstock and bio-oil compounds distribution[J]. Energy Fuels, 2017, 31(7): 7093-7100. doi: 10.1021/acs.energyfuels.7b00545
|
[14] |
王娜, 张学芹, 雷勇, 等. 故宫太和殿护板灰有机组分的红外光谱及热裂解-气相色谱/质谱分析[J]. 文物保护与考古科学, 2018, 30(2): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-WWBF201802014.htm
Wang N, Zhang X Q, Lei Y, et al. FTIR and Py-GC/MS analysis of organic materials used in the guard board mortar of Taihe Dian, the Forbidden City[J]. Sciences of Conservation and Archaeology, 2018, 30(2): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-WWBF201802014.htm
|
[15] |
van der Kaaden A, Boon J J, Haverkamp J. The analytical pyrolysis of carbohydrates. 2-Differentiation of homopolyhexoses according to their linkage type, by pyrolysis-mass spectrometry and pyrolysis-gas chromatography/mass spectrometry[J]. Biomedical Mass Spectrometry, 1984, 11(9): 486-492. doi: 10.1002/bms.1200110910
|
[16] |
Genuit W, Boon J J. Pyrolysis-gas chromatography-photoionization-mass spectrometry, a new approach in the analysis of macromolecular materials[J]. Journal of Analytical and Applied Pyrolysis, 1985, 8: 25-40. doi: 10.1016/0165-2370(85)80012-7
|
[17] |
van der Heijden E, Boon J, Rasmussen S, et al. Sphagnum acid and its decarboxylation product isopropenylphenol as biomarkers for fossilised[J]. Ancient Biomolecules, 1997, 1(2): 93-93.
|
[18] |
Schellekens J, Bradley J A, Kuyper T W, et al. The use of plant-specific pyrolysis products as biomarkers in peat deposits[J]. Quaternary Science Reviews, 2015, 123: 254-264. doi: 10.1016/j.quascirev.2015.06.028
|
[19] |
Schellekens J, Buurman P, Pontevedra-Pombal X. Selecting parameters for the environmental interpretation of peat molecular chemistry-A pyrolysis-GC/MS study[J]. Organic Geochemistry, 2009, 40(6): 678-691. doi: 10.1016/j.orggeochem.2009.03.006
|
[20] |
Ninnes S, Tolu J, Meyer-Jacob C, et al. Investigating molecular changes in organic matter composition in two Holocene lake-sediment records from central Sweden using pyrolysis-GC/MS[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(6): 1423-1438. doi: 10.1002/2016JG003715
|
[21] |
Kaal J, Cortizas A M, Rydberg J, et al. Seasonal changes in molecular composition of organic matter in lake sediment trap material from Nylandssj n, Sweden[J]. Organic Geochemistry, 2015, 83-84: 253-262. doi: 10.1016/j.orggeochem.2015.04.005
|
[22] |
Sanjurjo-Sánchez J, Kaal J, Fenollós J L M. Organic matter from bevelled rim bowls of the Middle Euphrates: Results from molecular characterization using pyrolysis-GC-MS[J]. Microchemical Journal, 2018, 141: 1-6. doi: 10.1016/j.microc.2018.05.001
|
[23] |
Melenevskii V, Leonova G, Bobrov V, et al. Transformation of organic matter in the Holocene sediments of Lake Ochki (South Baikal region): Evidence from pyrolysis data[J]. Geochemistry International, 2015, 53(10): 903-921. doi: 10.1134/S0016702915080054
|
[24] |
Kumar M, Boski T, Lima-Filho F P, et al. Environmental changes recorded in the Holocene sedimentary infill of a tropical estuary[J]. Quaternary International, 2018, 476: 34-45. doi: 10.1016/j.quaint.2018.03.006
|
[25] |
Kaal J, Cortizas A M, Eckmeier E, et al. Holocene fire history of black colluvial soils revealed by pyrolysis-GC/MS: A case study from Campo Lameiro (NW Spain)[J]. Journal of Archaeological Science, 2008, 35(8): 2133-2143. doi: 10.1016/j.jas.2008.01.013
|
[26] |
Carr A S, Boom A, Chase B M, et al. Molecular fingerprinting of wetland organic matter using pyrolysis-GC/MS: An example from the southern Cape coastline of South Africa[J]. Journal of Paleolimnology, 2010, 44(4): 947-961. doi: 10.1007/s10933-010-9466-9
|
[27] |
Li Z, Zhang Z, Xue Z, et al. Molecular fingerprints of soil organic matter in a typical freshwater wetland in northeast China[J]. Chinese Geographical Science, 2019, 29(4): 700-708. doi: 10.1007/s11769-019-1062-y
|
[28] |
Lu X, Ma S, Chen Y, et al. Squalene found in alpine grassland soils under a harsh environment in the Tibetan Plateau, China[J]. Biomolecules, 2018, 8(154): 1-12.
|
[29] |
Li Z, Zhang Z, Li M, et al. Molecular fingerprints of soil organic carbon in wetlands covered by native and non-native plants in the Yellow River Delta[J]. Wetlands, 2020(2): 1-10.
|
[30] |
Chen Q, Wu Y, Lei T, et al. Study on the fingerprints of soil organic components in Alpine grassland based on Py-GC-MS/MS technology[J]. Acta Ecologica Sinica, 2018, 38(8): 2864-2873.
|
[31] |
Xie M, Sun Q, Dong H, et al. n-alkanes and compound carbon isotope records from Lake Yiheshariwusu in the Hulun Buir sandy land, northeastern China[J]. The Holocene, 2020, 30(10): 1451-1461. doi: 10.1177/0959683620932968
|
[32] |
丛浦珠, 苏克曼. 分析化学手册: 质谱分析(第九分册)[M]. 北京: 化学工业出版社, 2000.
Cong P Z, Su K M. Handbook of analytical chemistry: Mass spectrometry (Volume 9)[M]. Beijing: Chemical Industry Press, 2000.
|
[33] |
McClymont E L, Bingham E M, Nott C J, et al. Pyrolysis GC-MS as a rapid screening tool for determination of peat-forming plant composition in cores from ombrotrophic peat[J]. Organic Geochemistry, 2011, 42(11): 1420-1435. doi: 10.1016/j.orggeochem.2011.07.004
|
[34] |
Schellekens J, Buurman P. n-alkane distributions as palaeoclimatic proxies in ombrotrophic peat: The role of decomposition and dominant vegetation[J]. Geoderma, 2011, 164(3-4): 112-121. doi: 10.1016/j.geoderma.2011.05.012
|
[35] |
Moldoveanu S C. Pyrolysis GC/MS, present and future (recent past and present needs)[J]. Journal of Microcolumn Separations, 2001, 13(3): 102-125. doi: 10.1002/mcs.1028
|
[36] |
Zhang H, Liao W, Zhou X, et al. Coeffect of pyrolysis temperature and potassium phosphate impregnation on characteristics, stability, and adsorption mechanism of phosphorus-enriched biochar[J]. Bioresource Technology, 2022, 344: 1-10.
|
[37] |
Singh B P, Cowie A L, Smernik R J. Biochar carbon stability in a clayey soil As a function of feedstock and pyrolysis temperature[J]. Environmental Science & Technology, 2012, 46(21): 11770-11778.
|
[38] |
Cui D, Li J, Zhang X, et al. Pyrolysis temperature effect on compositions of basic nitrogen species in Huadian shale oil using positive-ion ESI FT-ICR MS and GC-NCD[J]. Journal of Analytical and Applied Pyrolysis, 2021, 153: 1-10.
|
[39] |
Fabbri D, Adamiano A, Falini G, et al. Analytical pyro-lysis of dipeptides containing proline and amino acids with polar side chains. Novel 2, 5-diketopiperazine markers in the pyrolysates of proteins[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 145-155. doi: 10.1016/j.jaap.2012.02.001
|
[40] |
Zhu R, Versteegh G J M, Hinrichs K U. Detection of microbial biomass in subseafloor sediment by pyrolysis-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 175-180. doi: 10.1016/j.jaap.2016.02.002
|
[41] |
Lara-Gonzalo A, Kruge M A, Lores I, et al. Pyrolysis GC-MS for the rapid environmental forensic screening of contaminated brownfield soil[J]. Organic Geochemistry, 2015, 87: 9-20. doi: 10.1016/j.orggeochem.2015.06.012
|
[42] |
Kaal J, Martinez C A, Mateo M A, et al. Deci-phering organic matter sources and ecological shifts in blue carbon ecosystems based on molecular fingerprinting[J]. Science of the Total Environment, 2020, 742: 1-19.
|
[43] |
Zúñiga D, Kaal J, Villacieros-Robineau N, et al. Tracing sinking organic matter sources in the NW Iberian upwelling system (NE Atlantic Ocean): Comparison between elemental, isotopic and molecular indicators[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 114-122. doi: 10.1016/j.jaap.2019.01.016
|
[44] |
Kruge M A, Permanyer A. Application of pyrolysis-GC/MS for rapid assessment of organic contamination in sediments from Barcelona Harbor[J]. Organic Geochemistry, 2004, 35(11): 1395-1408.
|
[45] |
Lewis J M T, Najorka J, Watson J S, et al. The search for Hesperian organic matter on Mars: Pyrolysis studies of sediments rich in sulfur and iron[J]. Astrobiology, 2018, 18(4): 454-464. doi: 10.1089/ast.2017.1717
|
[46] |
Zhang Y, Yang K, Du J, et al. Chemical characterization of fractions of dissolved humic substances from a marginal sea-A case from the Southern Yellow Sea[J]. Journal of Oceanology and Limnology, 2018, 36(2): 238-248. doi: 10.1007/s00343-017-6202-6
|
[47] |
Kumar M, Boski T, González-Vila F J, et al. Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa Lagoon (South Portugal)[J]. Environmental Science and Pollution Research, 2020, 27(23): 28962-28985. doi: 10.1007/s11356-020-09235-9
|
[48] |
Tolu J, Gerber L, Boily J F, et al. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multi-variate curve resolution: A promising analytical tool in (paleo)limnology[J]. Analytica Chimica Acta, 2015, 880: 93-102. doi: 10.1016/j.aca.2015.03.043
|
[49] |
Sigleo A C, Hoering T C, Helz G R. Composition of estuarine colloidal material: Organic components[J]. Geochimica et Cosmochimica Acta, 1982, 46(9): 1619-1626. doi: 10.1016/0016-7037(82)90318-0
|
[50] |
Kaal J. Analytical pyrolysis in marine environments revi-sited[J]. Analytical Pyrolysis Letters, 2019, 6: 1-16.
|
[51] |
Wang Q, Wang X M, Shuo P. Study on the structure, pyrolysis kinetics, gas release, reaction mechanism, and pathways of Fushun oil shale and kerogen in China[J]. Fuel Processing Technology, 2022, 225(107058): 1-11.
|
[52] |
Boateng A A, Hicks K B, Vogel K P. Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity[J]. Journal of Analytical & Applied Pyrolysis, 2006, 75(2): 55-64.
|
[53] |
Liu H, Yuan P, Liu D, et al. Pyrolysis behaviors of organ-ic matter (OM) with the same alkyl main chain but different functional groups in the presence of clay minerals[J]. Applied Clay Science, 2018, 153: 205-216. doi: 10.1016/j.clay.2017.12.028
|
[54] |
Faure P, Jeanneau L, Lannuzel F. Analysis of organic matter by flash pyrolysis-gas chromatography-mass spectrometry in the presence of Na-smectite: When clay minerals lead to identical molecular signature[J]. Organic Geochemistry, 2006, 37(12): 1900-1912. doi: 10.1016/j.orggeochem.2006.09.008
|
[55] |
Zhang J, Wu C, Hou W, et al. Biological calcium car-bonate with a unique organic-inorganic composite structure to enhance biochar stability[J]. Environmental Science: Processes & Impacts, 2021, 23(11): 1747-1758.
|
[56] |
Meyers P A. Organic geochemical proxies of paleoceano-graphic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5-6): 213-250. doi: 10.1016/S0146-6380(97)00049-1
|
[57] |
沈吉, 刘兴起, Matsumoto R, 等. 晚冰期以来青海湖沉积物多指标高分辨率的古气候演化[J]. 中国科学: 地球科学, 2004, 34(6): 582-589. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200406010.htm
Shen J, Liu X Q, Matsumoto R, et al. Multi index and high-resolution paleoclimate evolution of sediments in Qinghai Lake since late glacial period[J]. Science in China Series D: Earth Sciences, 2004, 34(6): 582-589. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200406010.htm
|
[58] |
Zhang J R, Jia Y L, Lai Z P, et al. Holocene evo-lution of Huangqihai Lake in semi-arid northern China based on sedimentology and luminescence dating[J]. Holocene, 2011, 21(8): 1261-1268. doi: 10.1177/0959683611405232
|
[59] |
Sun Q, Zhou J, Shen J, et al. Environmental characteristics of Mid-Holocene recorded by lacustrine sediments from Lake Daihai, north environment sensitive zone, China[J]. Science in China Series D: Earth Sciences, 2006, 49(9): 968-981. doi: 10.1007/s11430-006-0968-2
|
[60] |
温锐林, 肖举乐, 常志刚, 等. 全新世呼伦湖区植被和气候变化的孢粉记录[J]. 第四纪研究, 2010, 30(6): 1105-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201006005.htm
Wen R L, Xiao J L, Chang Z G, et al. Holocene vegetation and climate changes reflected by the pollen record of Hulun Lake, north-eastern Inner Mongolia[J]. Quaternary Sciences, 2010, 30(6): 1105-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201006005.htm
|
[61] |
陈发虎, 吴薇, 朱艳, 等. 阿拉善高原中全新世干旱事件的湖泊记录研究[J]. 科学通报, 2004, 49(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200401000.htm
Chen F H, Wu W, Zhu Y, et al. Lake records of middle Holocene drought events in Alxa Plateau[J]. Chinese Science Bulletin, 2004, 49(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200401000.htm
|
[62] |
Nierop K, Jansen B, Hageman J A, et al. The complementarity of extractable and ester-bound lipids in a soil profile under pine[J]. Plant & Soil, 2006, 286(1-2): 269-285.
|
[63] |
Angst G, Cajthaml T, Angst Š, et al. Performance of base hydrolysis methods in extracting bound lipids from plant material, soils, and sediments[J]. Organic Geochemistry, 2017, 113: 97-104. doi: 10.1016/j.orggeochem.2017.08.004
|
[64] |
Jia Q H, Sun Q, Xie M M, et al. Normal alkane distributions in soil samples along a Lhasa-Bharatpur Transect[J]. Acta Geologica Sinica (English Edition), 2016, 90(2): 738-748. doi: 10.1111/1755-6724.12701
|
[65] |
Pu Y, Zhang H C, Lei G L, et al. Climate variability recorded by n-alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS3[J]. Science China (Earth Sciences), 2010, 53(6): 863-870. doi: 10.1007/s11430-010-0075-2
|
[66] |
Baker A, Routh J, Roychoudhury A N. n-alkan-2-one biomarkers as a proxy for palaeoclimate reconstruction in the Mfabeni Fen, South Africa[J]. Organic Geochemistry, 2018, 120: 75-85. doi: 10.1016/j.orggeochem.2018.03.001
|
[67] |
Zhang Y, Huang X, Wang R, et al. The distribution of long-chain n-alkan-2-ones in peat can be used to infer past changes in pH[J]. Chemical Geology, 2020, 544(119622): 1-17.
|
[68] |
Chen L, Zhou W, Zhang Y, et al. Postglacial floral and climate changes in southeastern China recorded by distributions of n-alkan-2-ones in the Dahu sediment-peat sequence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538(109448): 1-8.
|