• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
ZHANG Xiaohui, FENG Yuhuan, ZHANG Yong, MAITUOHUTI Abuduwayiti. Characterization of Yellow-Green Hetian Jade in Qiemo—Ruoqiang, Xinjiang[J]. Rock and Mineral Analysis, 2022, 41(4): 586-597. DOI: 10.15898/j.cnki.11-2131/td.202111210180
Citation: ZHANG Xiaohui, FENG Yuhuan, ZHANG Yong, MAITUOHUTI Abuduwayiti. Characterization of Yellow-Green Hetian Jade in Qiemo—Ruoqiang, Xinjiang[J]. Rock and Mineral Analysis, 2022, 41(4): 586-597. DOI: 10.15898/j.cnki.11-2131/td.202111210180

Characterization of Yellow-Green Hetian Jade in Qiemo—Ruoqiang, Xinjiang

  • BACKGROUND

    The Hetian nephrite belt in Xinjiang is the largest nephrite ore belt in the world, with a length of about 1300km. In addition to white, gray, black and brown nephrite, the Qiemo—Ruoqiang zone, Xinjiang also produces a yellow-green nephrite. There are few studies on the color origin and characterization of this kind of Hetian nephrite, which affects the understanding of the color and genesis of this kind of Hetian nephrite.

    OBJECTIVES

    To understand the color genesis, genetic types and formation age of the yellow-green nephrite in Qiemo—Ruoqiang deposit.

    METHODS

    Electron probe microanalysis (EPMA), backscattered electron (BSE) image, X-ray fluorescencespectrometry (XRF), and high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS) were used to investigate mineral and chemical composition. The FeO content was determined by titration method to explore its color origin and genetic type, and the zircon U-Pb isotope dating by sensitive high-resolution ion microprobe (SHRIMP) was used to constrain its mineralization age.

    RESULTS

    Yellow-green nephrite in Qiemo—Ruoqiang was predominately composed of apatite, calcite, dolomite, diopside, epidote, sphene and zircon. The yellow-green nephrite whole rock had low total REE (∑REE=2.61-19.1μg/g) with obvious Eu negative anomaly (δEu < 0.05), LREE right dipping, and HREE flat pattern. According to the distribution pattern of rare earth and the content of Cr and Ni, it was inferred that it was a magnesia skarn type Hetian nephrite. Compared with other nephrite in the world, the average value of Fe3+/Fe2+ of the yellow-green nephrite in Qiemo—Ruoqiang (average=0.16) overlapped with nephrite in other regions. The ratio is slightly higher (0.07-0.26), while the content of Fe3+ and Fe2+ was not significantly different between the yellow-green nephrite and other color nephrite. The SHRIMP U-Pb dating of zircon in the yellow-green nephrite yielded ages of 461.7±6.1Ma (MSWD=1.6) and 498.1±4.6Ma (MSWD=1.16).

    CONCLUSIONS

    The color genesis of the yellow-green nephrite in Qiemo is probably related to the ratio of Fe3+/Fe2+, but not to the content of Fe3+ and Fe2+. The SHRIMP U-Pb dating results of zircon in yellow-green nephrite represent the formation age of the yellow-green nephrite. These new data provide geochronological constraints for the magmatism of Hetian nephrite belt and the tectonic evolution of the West Kunlun orogenic belt.

  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return