• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
YING Jiaolong, QIN Xiaopeng, LANG Hang, GUO Jianyi, XIONG Ling, ZHANG Zhanhao, LIU Fei. Determination of 37 Typical Antibiotics by Liquid Chromatography-Triple Quadrupole Mass Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3): 394-403. DOI: 10.15898/j.cnki.11-2131/td.202111060168
Citation: YING Jiaolong, QIN Xiaopeng, LANG Hang, GUO Jianyi, XIONG Ling, ZHANG Zhanhao, LIU Fei. Determination of 37 Typical Antibiotics by Liquid Chromatography-Triple Quadrupole Mass Spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3): 394-403. DOI: 10.15898/j.cnki.11-2131/td.202111060168

Determination of 37 Typical Antibiotics by Liquid Chromatography-Triple Quadrupole Mass Spectrometry

More Information
  • Received Date: November 05, 2021
  • Revised Date: December 22, 2021
  • Accepted Date: January 26, 2022
  • Available Online: July 28, 2022
  • HIGHLIGHTS
    (1) A method for simultaneous determination of 37 antibiotics by ultra-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS/MS) was established, which can be applied to the detection of antibiotics in surface water and groundwater simultaneously.
    (2) The method was applied to the detection of antibiotics in surface water of the Yongding River, and surface water and groundwater of the Chaobai River in Beijing, whose antibiotics were detected in different levels.
    (3) The concentration of antibiotics near the sewage treatment plant was relatively high.
    BACKGROUND

    Currently, the environmental detection of antibiotics is receiving extensive attention, but there is still a lack of methods that can simultaneously analyze seven categories of antibiotics in surface water and groundwater.

    OBJECTIVES

    To establish a method that can detect thirty-seven antibiotics (15 sulfonamides, 2 tetracyclines, 3 macrolides, 8 quinolones, 2 chloramphenicols, 2 β-lactams and 5 other kinds) simultaneously.

    METHODS

    Solid phase extraction coupled with ultra-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS/MS) was used to quantify the concentration of antibiotics.

    RESULTS

    The method had good sensitivity and enrichment effect for the surface water and groundwater, the recoveries ranged from 60% to 130%, the detection limits ranged from 0.6 to 10.6ng/L. The method was applied to the determination of antibiotics in surface water of the Yongding and Chaobai Rivers, and groundwater of the Chaobai River in Beijing. Sulfonamides, quinolones and macrolides were the main antibiotics in the surface water of the Yongding River, and the detection rates were 88.9%, 55.6% and 33.3%, respectively. The highest concentration of floxacin was 111.9ng/L. Sulfonamides, quinolones and chloramphenicols were the main antibiotics in the surface water of the Chaobai River with detection rates of 100%. The highest concentration of tilmicosin was 71.6ng/L. Sulfonamides, quinolones and β-lactams antibiotics were the main antibiotics in the groundwater of the Chaobai River Basin, and the detection rates of were 66.7%, 55.6% and 22.2%, respectively. The highest concentration of sulfadiazine was 69.3ng/L. In both surface water and groundwater, the detection rate and concentration near the sewage treatment plant were significantly higher than those at other points.

    CONCLUSIONS

    The method established in this study is simple, rapid and accurate, which can be used for the simultaneous determination of 37 antibiotics in seven categories in surface water and groundwater. It provides antibiotic analysis method support for surface water and groundwater investigation, and provides a scientific basis for rational utilization of water resources and management of new pollutants in water.

  • [1]
    祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展[J]. 岩矿测试, 2014, 33(1): 1-11. doi: 10.3969/j.issn.0254-5357.2014.01.002

    Qi Y J, Liu F. Analysis of antibiotics in groundwater: A review[J]. Rock and Mineral Analysis, 2014, 33(1): 1-11. doi: 10.3969/j.issn.0254-5357.2014.01.002
    [2]
    Huang F Y, An Z Y, Moran M J, et al. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009—2019)[J]. Journal of Hazardous Materials, 2020, 399: 122813. doi: 10.1016/j.jhazmat.2020.122813
    [3]
    Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
    [4]
    Hagenbuch I M, Pinckney J L. Toxic effect of the combined antibiotics ciprofloxacin, lincomycin, and tylosin on two species of marine diatoms[J]. Water Research, 2012, 46(16): 5028-5036. doi: 10.1016/j.watres.2012.06.040
    [5]
    Chen L P, Huang F Y, Zhang C, et al. Effects of norfloxacin on nitrate reduction and dynamic denitrifying enzymes activities in groundwater[J]. Environmental Pollution, 2021, 273: 116492. doi: 10.1016/j.envpol.2021.116492
    [6]
    Hoai T D, Trang T T, Tuyen N V, et al. Aeromonas veronii caused disease and mortality in channel catfish in Vietnam[J]. Aquaculture, 2019, 513: 734425. doi: 10.1016/j.aquaculture.2019.734425
    [7]
    Huang F Y, Zou S Z, Deng D D, et al. Antibiotics in a typical karst river system in China: Spatiotemporal variation and environmental risks[J]. Science of the Total Environment, 2019, 650: 1348-1355. doi: 10.1016/j.scitotenv.2018.09.131
    [8]
    Duan L, Zhang Y Z, Wang B, et al. Characteristics of pharmaceutically active compounds in surface water in Beijing, China: Occurrence, spatial distribution and biennial variation from 2013 to 2017[J]. Environmental Pollution, 2020, 264: 114753. doi: 10.1016/j.envpol.2020.114753
    [9]
    朱帅, 沈亚婷, 贾静, 等. 环境介质中典型新型有机污染物分析技术研究进展[J]. 岩矿测试, 2018, 37(5): 586-606. doi: 10.15898/j.cnki.11-2131/td.201603300054

    Zhu S, Shen Y T, Jia J, et al. Review on the analytical methods of typical emerging organic pollutants in the environment[J]. Rock and Mineral Analysis, 2018, 37(5): 586-606. doi: 10.15898/j.cnki.11-2131/td.201603300054
    [10]
    董恒涛, 姚劲挺, 郝红元, 等. 超高效液相色谱三重四极杆质谱联用法测定地表水中14种喹诺酮类抗生素残留[J]. 环境化学, 2018, 37(6): 1436-1439. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201806029.htm

    Dong H T, Yao J T, Hao H Y, et al. Determination of 14 quinolones residues in surface water by UHPLC-MS/MS[J]. Environmental Chemistry, 2018, 37(6): 1436-1439. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201806029.htm
    [11]
    朱峰, 吉文亮, 阮丽萍, 等. 高效液相色谱-质谱联用法同时检测水体中13种β-内酰胺类药物残留[J]. 色谱, 2016, 34(3): 299-305. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201603012.htm

    Zhu F, Ji W L, Ruan L P, et al. Simultaneous determination of 13 β-lactam residues in water by high performance liquid chromatography tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2016, 34(3): 299-305. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ201603012.htm
    [12]
    Xue Q, Qi Y J, Liu F. Ultra-high performance liquid chromatography-electrospray tandem mass spectrometry for the analysis of antibiotic residues in environmental waters[J]. Environmental Science & Pollution Research International, 2015, 22(21): 16857.
    [13]
    马健生, 王卓, 张泽宇, 等. 哈尔滨市地下水中29种抗生素分布特征研究[J]. 岩矿测试, 2021, 40(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202101040001

    Ma J S, Wang Z, Zhang Z Y, et al. Study on distribution characteristics of 29 antibiotics in groundwater in Harbin[J]. Rock and Mineral Analysis, 2021, 40(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202101040001
    [14]
    Zou S Z, Huang F Y, Chen L, et al. The occurrence and distribution of antibiotics in the karst river system in Kaiyang, southwest China[J]. Water Science and Technology-Water Supply, 2018, 18(6): 2044-2052. doi: 10.2166/ws.2018.026
    [15]
    郎杭. 地下水中典型药物定性识别及抗生素定量的方法研究与应用[D]. 北京: 中国地质大学(北京), 2020.

    Lang H. Pharmaceutical identification and antibiotics detection in groundwater[D]. Beijing: China University of Geosciences (Beijing), 2020.
    [16]
    Jiang M X, Wang L H, Ji R. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment[J]. Chemosphere, 2010, 80(11): 1399-1405. doi: 10.1016/j.chemosphere.2010.05.048
    [17]
    Volmer D A, Hui J P M. Study of erythromycin A decomposition products in aqueous solution by solid-phase microextraction/liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 1998, 12(3): 123-129. doi: 10.1002/(SICI)1097-0231(19980214)12:3<123::AID-RCM126>3.0.CO;2-4
    [18]
    Baran W, Sochacka J, Wardas W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions[J]. Chemosphere, 2006, 65(8): 1295-1299. doi: 10.1016/j.chemosphere.2006.04.040
    [19]
    Lapworth D J, Baran N, Stuart M E, et al. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence[J]. Environmental Pollution, 2012, 163: 287-303. doi: 10.1016/j.envpol.2011.12.034
    [20]
    Zhou L J, Ying G G, Liu S, et al. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography A, 2012, 1244: 123-138. doi: 10.1016/j.chroma.2012.04.076
    [21]
    Ying J L, Qin X P, Zhang Z H, et al. Removal of lincomy-cin from aqueous solution by birnessite: Kinetics, mechanism, and effect of common ions[J]. Environmental Science and Pollution Research, 2021, 28(3): 3590-3600. doi: 10.1007/s11356-020-10766-4
    [22]
    朱琳, 张远, 渠晓东, 等. 北京清河水体及水生生物体内抗生素污染特征[J]. 环境科学研究, 2014, 27(2): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201402005.htm

    Zhu L, Zhang Y, Qu X D, et al. Occurrence of antibiotics in aquatic plants and organisms from Qing River, Beijing[J]. Research of Environmental Sciences, 2014, 27(2): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201402005.htm
    [23]
    章琴琴. 北京温榆河流域抗生素污染分布特征及源解析研究[D]. 重庆: 重庆大学, 2012.

    Zhang Q Q. Determination and source apportionment of three classes of antibiotics in Beijing Wenyu Rivers[D]. Chongqing: Chongqing University, 2012.
    [24]
    方龙飞, 魏群山, 王元宏, 等. 上海黄浦江上游典型抗生素来源及分布污染特征研究[J]. 环境污染与防治, 2017, 39(3): 301-306. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201703015.htm

    Fang L F, Wei Q S, Wang Y H, et al. Source and distribution of typical antibiotics in the Upper Huangpu River, Shanghai[J]. Environmental Pollution & Control, 2017, 39(3): 301-306. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201703015.htm
    [25]
    周志洪, 赵建亮, 魏晓东, 等. 珠江广州段水体抗生素的复合污染特征及其生态风险[J]. 生态环境学报, 2017, 26(6): 1031-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201706018.htm

    Zhou Z H, Zhao J L, Wei X D, et al. Co-occurrence and ecological risk of antibiotics insurface water of Guangzhou Section of Pearl River[J]. Ecology and Environmental Sciences, 2017, 26(6): 1031-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201706018.htm
    [26]
    Du S, Ben W W, Strobel B W, et al. Occurrence, source estimation and risk assessment of pharmaceuticals in the Chaobai River characterized by adjacent land use[J]. Science of the Total Environment, 2020, 712: 134525. doi: 10.1016/j.scitotenv.2019.134525
    [27]
    吴苗苗. 再生水回灌过程中典型磺胺类抗生素的行为特性研究[D]. 北京: 清华大学, 2015.

    Wu M M. The behavior of typical sulfanomides in soil by groundwater recharge with reclaimed water[D]. Beijing: Tsinghua University, 2015.
    [28]
    Hanna N, Sun P, Sun Q, et al. Presence of antibiotic resi-dues in various environmental compartments of Shandong Province in eastern China: Its potential for resistance development and ecological and human risk[J]. Environment International, 2018, 114: 131-142. doi: 10.1016/j.envint.2018.02.003
    [29]
    Zhang C H, Wang L L, Gao X Y, et al. Antibiotics in WWTP discharge into the Chaobai River, Beijing[J]. Archives of Environmental Protection, 2016, 42(4): 48-57. doi: 10.1515/aep-2016-0036
  • Cited by

    Periodical cited type(4)

    1. 陈彪,金海龙,贾晓琪,孙庆,刘雁江,魏威. 白云鄂博矿床包头矿的矿物学特征研究. 稀土. 2025(01): 14-24 .
    2. 沈啟武,王大钊,冷成彪,余海军,张传昱,苏肖宇,毛金伟,梁丰. 云南普朗超大型斑岩铜金矿床中发现碲化物和硒化物. 岩矿测试. 2023(03): 643-646 . 本站查看
    3. 韦连军,陈燕清,雷满奇,黄庆柒. 广西桂西地区沉积型铝土矿矿物特征研究. 岩矿测试. 2023(06): 1220-1229 . 本站查看
    4. 涂家润,卢宜冠,孙凯,周红英,郭虎,崔玉荣,耿建珍,李国占. 应用微束分析技术研究铜钴矿床中钴的赋存状态. 岩矿测试. 2022(02): 226-238 . 本站查看

    Other cited types(2)

Catalog

    Article views (262) PDF downloads (38) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return