• DOAJ
  • Scopus
  • Core Journal of China
  • Chinese Science Citation Database (CSCD)
  • Chinese Scientific and Technical Paper and Citation Database (CSTPCD)
TAN Xijuan, GUO Chao, FENG Yonggang, ZHOU Yi, LIANG Ting. Effect of Gas Flow Rates in Laser Ablation System on Accuracy and Precision of Zircon U-Pb Dating Analysis by LA-ICP-MS[J]. Rock and Mineral Analysis, 2022, 41(4): 554-563. DOI: 10.15898/j.cnki.11-2131/td.202110020140
Citation: TAN Xijuan, GUO Chao, FENG Yonggang, ZHOU Yi, LIANG Ting. Effect of Gas Flow Rates in Laser Ablation System on Accuracy and Precision of Zircon U-Pb Dating Analysis by LA-ICP-MS[J]. Rock and Mineral Analysis, 2022, 41(4): 554-563. DOI: 10.15898/j.cnki.11-2131/td.202110020140

Effect of Gas Flow Rates in Laser Ablation System on Accuracy and Precision of Zircon U-Pb Dating Analysis by LA-ICP-MS

More Information
  • Received Date: October 01, 2021
  • Revised Date: April 19, 2022
  • Accepted Date: April 29, 2022
  • Available Online: September 08, 2022
  • HIGHLIGHTS
    (1) The effect of carrier gas (He) and make-up gas (Ar) flow rate on zircon U-Pb dating analysis by LA-ICP-MS was studied.
    (2) A ratio of 1 for He to Ar with the exact value of 0.8L/min yielded the highest 206Pb/238U age concordance values (91%-96%).
    (3) Zircon dating analysis can be improved via optimizing sample aerosol transportation efficiency, with accuracy enhanced by 6% and precision increased by 3.4 times.
    BACKGROUND

    Despite zircon U-Pb dating analysis by LA-ICP-MS receiving wide acceptance, it remains a challenge to obtain results with high accuracy and precision. It is known that gas flow rates of LA system can affect the signal stability of ICP-MS and thus result in impacts on analytical uncertainty of zircon U-Pb dating. However, the exact effects and mechanism of gas flow rates on zircon U-Pb dating analysis are still unclear.

    OBJECTIVES

    To thoroughly understand the influence of gas flow rates on the analytical uncertainty of zircon U-Pb dating, and to provide valuable information to propose a reliable and robust LA-ICP-MS approach for zircon U-Pb dating analysis.

    METHODS

    By applying zircon standard samples of Harvard 91500 and Plešovice as researching subjects, ICP-MS connected to a 193nm nanosecond laser ablation system was used to investigate the influence of gas flow rate settings on accuracy and precision of U-Pb dating analysis. RESULTS: With fixed make-up gas (Ar) of 1.0L/min, the average 206Pb/238U ages of Harvard 91500 were found to increase from 1002.0±10.4Ma (1σ) to 1083.0±6.8Ma (1σ) with increasing carrier gas (He) from 0.2 to 1.2L/min. Thus, it was clear that the sample aerosol transportation efficiency can greatly affect the analytical accuracy of zircon U-Pb dating. Furthermore, when the He flow rate was higher than 0.8L/min, the analytical accuracy and precision of zircon U-Pb dating decreased due to the increased signal intensity oscillations and formation of oxides from the introduction of large particles of sample aerosols. The comparison of the data of Plešovice obtained under 0.95/0.8, 0.80/0.8 and 0.8/0.6L/min for He/Ar gas flow rate patterns indicated that there were no significant differences in U/Pb weighted average age. However, the relative deviation of 1σ single-point analysis was the smallest (1.4%) when the Ar and He flow rates were both 0.8L/min.

    CONCLUSIONS

    The analytical accuracy and precision of zircon U-Pb dating by LA-ICP-MS can be improved by optimizing the gas flow rate setting of carrier gas and make-up gas, and highly recommending 0.8L/min of both Ar and He.

  • [1]
    Lee J, Williams I, Ellis D. Pb, U and Th diffusion in nature zircon[J]. Nature, 1997, 390: 159-162. doi: 10.1038/36554
    [2]
    Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569. doi: 10.1007/BF03184122
    [3]
    Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology, 2000, 172(1-2): 5-24.
    [4]
    Nardi L V S, Formoso M L L, Müller I F, et al. Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes[J]. Chemical Geology, 2013, 335: 1-7. doi: 10.1016/j.chemgeo.2012.10.043
    [5]
    王先广, 刘战庆, 刘善宝, 等. 江西朱溪铜钨矿细粒花岗岩LA-ICP-MS锆石U-Pb定年和岩石地球化学研究[J]. 岩矿测试, 2015, 34(5): 592-599. doi: 10.15898/j.cnki.11-2131/td.2015.05.016

    Wang X G, Liu Z Q, Liu S B, et al. LA-ICP-MS zircon U-Pb dating and petrologic geochemistry of fine-grained granite from Zhuxi Cu-W deposit, Jiangxi Province and its geological significance[J]. Rock and Mineral Analysis, 2015, 34(5): 592-599. doi: 10.15898/j.cnki.11-2131/td.2015.05.016
    [6]
    Schaltegger U, Schmitt A K, Horstwood M S A. U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities[J]. Chemical Geology, 2015, 402: 89-110. doi: 10.1016/j.chemgeo.2015.02.028
    [7]
    Kröner A, Wan Y S, Liu X M, et al. Dating of zircon from high-grade rocks: Which is the most reliable method?[J]. Geoscience Frontiers, 2014, 5(4): 515-523. doi: 10.1016/j.gsf.2014.03.012
    [8]
    Liu Y, Li X H, Li Q L, et al. Precise U-Pb zircon dating at a scale of <5micron by the CAMECA 1280 SIMS using a Gaussian illumination probe[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(4): 845-851. doi: 10.1039/c0ja00113a
    [9]
    Fryer B J, Jackson S E, Longerich H P. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)-Pb geochronology[J]. Chemical Geology, 1993, 109(1-4): 1049-1064.
    [10]
    Klotzli U, Klotzli E, Gunes Z, et al. Accuracy of laser ablation U-Pb zircon dating: Results from a test using five different reference zircons[J]. Geostandards & Geoanalytical Research, 2009, 33(1): 5-15.
    [11]
    范晨子, 胡明月, 赵令浩, 等. 锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展[J]. 岩矿测试, 2012, 31(1): 29-46. doi: 10.3969/j.issn.0254-5357.2012.01.004

    Fan C Z, Hu M Y, Zhao L H, et al. Advances in in situ microanalysis of U-Pb zircon geochronology using laser ablation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 29-46. doi: 10.3969/j.issn.0254-5357.2012.01.004
    [12]
    Solari L A, Ortega-Obregón C, Bernal J P. U-Pb zircon geochronology by LA-ICPMS combined with thermal annealing: Achievements in precision and accuracy on dating standard and unknown samples[J]. Chemical Geology, 2015, 414: 109-123. doi: 10.1016/j.chemgeo.2015.09.008
    [13]
    Li X H, Liu X M, Liu Y S, et al. Accuracy of LA-ICPMS zircon U-Pb age determination: An inter-laboratory comparison[J]. Science China: Earth Sciences, 2015, 58(10): 1722-1730. doi: 10.1007/s11430-015-5110-x
    [14]
    Allen C M, Campbell I H. Identification and elimination of a matrix-induced systematic error in LA-ICP-MS 206Pb/238U dating of zircon[J]. Chemical Geology, 2012, 332-333: 157-165. doi: 10.1016/j.chemgeo.2012.09.038
    [15]
    Luo T, Hu Z C, Zhang W, et al. Water vapor-assisted "universal" nonmatrix-matched analytical method for the in situ U-Pb dating of zircon, monazite, titanite, and xenotime by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2018, 90(15): 9016-9024. doi: 10.1021/acs.analchem.8b01231
    [16]
    Košler J, Jackson S, Yang Z, et al. Effect of oxygen in sample carrier gas on laser-induced elemental fractionation in U-Th-Pb zircon dating by laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(5): 832-840. doi: 10.1039/C3JA50386K
    [17]
    王辉, 汪方跃, 关炳庭, 等. 激光能量密度对LA-ICP-MS分析数据质量的影响研究[J]. 岩矿测试, 2019, 38(6): 609-619. doi: 10.15898/j.cnki.11-2131/td.201903010029

    Wang H, Wang F Y, Guan B T, et al. Effect of laser energy density on data quality during LA-ICP-MS measurement[J]. Rock and Mineral Analysis, 2019, 38(6): 609-619. doi: 10.15898/j.cnki.11-2131/td.201903010029
    [18]
    周亮亮, 魏均启, 王芳, 等. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用[J]. 岩矿测试, 2017, 36(4): 350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007

    Zhou L L, Wei J Q, Wang F, et al. Optimization of the working parameters of LA-ICP-MS and its application to zircon U-Pb dating[J]. Rock and Mineral Analysis, 2017, 36(4): 350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007
    [19]
    于超, 杨志明, 周利敏, 等. 激光焦平面变化对LA-ICPMS锆石U-Pb定年准确度的影响[J]. 矿床地质, 2019, 38(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201901002.htm

    Yu C, Yang Z M, Zhou L M, et al. Impact of laser focus on accuracy of U-Pb dating of zircons by LA-ICPMS[J]. Mineral Deposits, 2019, 38(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201901002.htm
    [20]
    Günther D, Horn I, Hattendorf B. Recent trends and developments in laser ablation-ICP-mass spectrometry[J]. Fresenius Journal of Analytical Chemistry, 2000, 368(1): 4-14. doi: 10.1007/s002160000495
    [21]
    Schilling G D, Andrade F J, Barnes J H, et al. Contin-uous simultaneous detection in mass spectrometry[J]. Analytical Chemistry, 2007, 79(20): 7662-7668. doi: 10.1021/ac070785s
    [22]
    Hattendorf B, Hartfelder U, Günther D. Skip the beat: Minimizing aliasing error in LA-ICP-MS measurements[J]. Analytical and Bioanalytical Chemistry, 2019, 411(3): 591-602. doi: 10.1007/s00216-018-1314-1
    [23]
    Norris C A, Danyushevsky L, Olin P, et al. Elimination of aliasing in LA-ICP-MS by alignment of laser and mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(4): 733-739. doi: 10.1039/D0JA00488J
    [24]
    Tan X J, Koch J, Günther D, et al. In situ element analy-sis of spodumenes by fs-LA-ICPMS with non-matrix-matched calibration: Signal beat and accuracy[J]. Chemical Geology, 2021, 583: 120463. doi: 10.1016/j.chemgeo.2021.120463
    [25]
    Tunheng A, Hirata T. Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(7): 932-934. doi: 10.1039/b402493a
    [26]
    Müller W, Shelley M, Miller P, et al. Initial performance metrics of a new custom-designed ArF excimer LA-ICP-MS system coupled to a two-volume laser-ablation cell[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(2): 209-214. doi: 10.1039/B805995K
    [27]
    Hu Z C, Liu Y S, Gao S, et al. A "wire" signal smoo-thing device for laser ablation inductively coupled plasma mass spectrometry analysis[J]. Spectrochimica Acta: Part B, 2012, 78: 50-57. doi: 10.1016/j.sab.2012.09.007
    [28]
    Kon Y, Yokoyama T D, Ohata M. Analytical efficacy of a gas mixer and stabilizer for laser ablation ICP mass spectrometry[J]. ACS Omega, 2020, 5(43): 28073-28079. doi: 10.1021/acsomega.0c03658
    [29]
    Günther D, Heinrich C A. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1363-1368. doi: 10.1039/A901648A
    [30]
    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
    [31]
    Ludwig K R. User's manual for Isoplot/Ex, version 3.75. A geochronological toolkit for Microsoft Excel[R]. Berkeley: Berkeley Geochronology Center, 2012: 1-75.
    [32]
    Horn I, Günther D. The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: Implications for LA-ICP-MS[J]. Applied Surface Science, 2003, 207(1-4): 144-157. doi: 10.1016/S0169-4332(02)01324-7
    [33]
    Wiedenbeck M, Allé P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
    [34]
    Sláma J, Košler J, Condon D J, et al. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005
    [35]
    Luo T, Hu Z C, Zhang W, et al. Reassessment of the influence of carrier gases He and Ar on signal intensities in 193nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655-1663. doi: 10.1039/C8JA00163D
    [36]
    栾燕, 何克, 谭细娟. LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定[J]. 地质通报, 2019, 38(7): 1206-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201907014.htm

    Luan Y, He K, Tan X J. In situ U-Pb dating and trace element determination of standard zircons by LA-ICP-MS[J]. Geological Bulletin of China, 2019, 38(7): 1206-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201907014.htm
    [37]
    李艳广, 汪双双, 刘民武, 等. 斜锆石LA-ICP-MS U-Pb定年方法及应用[J]. 地质学报, 2015, 89(12): 2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015

    Li Y G, Wang S S, Liu M W, et al. U-Pb dating study of baddeleyite by LA-ICP-MS: Technique and application[J]. Acta Geologica Sinica, 2015, 89(12): 2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015
    [38]
    汪双双, 韩延兵, 李艳广, 等. 利用LA-ICP-MS在16μm和10μm激光束斑条件下测定独居石U-Th-Pb年龄[J]. 岩矿测试, 2016, 35(4): 349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

    Wang S S, Han Y B, Li Y G, et al. U-Th-Pb dating of monazite by LA-ICP-MS using ablation spot sizes of 16μm and 10μm[J]. Rock and Mineral Analysis, 2016, 35(4): 349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003
    [39]
    Xiong D Y, Guo L F, Liu C X, et al. Analytical effect of stabilizer volume and shape on zircon U-Pb dating by nanosecond LA-ICP-QMS[J]. Journal of Analytical Science and Technology, 2022, 13(13): 1-12.
  • Cited by

    Periodical cited type(8)

    1. 王鹏亮,刘双,张钰,钟顺清. 改性凹凸棒石对汞吸附及土壤汞钝化性能影响. 环境保护科学. 2025(01): 96-106 .
    2. 陶玲,米成成,王丽,王艺蓉,王彤玉,任珺. 凹凸棒石组配硫酸锌对土壤Cd的钝化效果及生态风险评价. 环境科学研究. 2022(01): 211-218 .
    3. 陶玲,仝云龙,余方可,杨万辉,王艺蓉,王丽,任珺. 碱改性凹凸棒石对土壤中镉化学形态及环境风险的影响. 岩矿测试. 2022(01): 109-119 . 本站查看
    4. 练建军,邬洪艳,叶天然,孔巧平,徐晴,吴朝阳,陈波,牛司平. 改性凹凸棒负载硫化亚铁的制备及其对水中Mo(Ⅵ)的吸附机制. 环境科学. 2022(12): 5647-5656 .
    5. 端爱玲,杨树俊,韩张雄,张树雄,王思远,李敏. 矿区土壤重金属污染化学修复及强化方法研究进展. 矿产综合利用. 2022(06): 104-109 .
    6. 宿俊杰,刘永兵,王鹤立,郭威,王嘉良,王宏鹏,张原浩. 面向碱性农地镉污染土壤钝化的凹凸棒改性特征及效果研究. 岩矿测试. 2022(06): 1029-1039 . 本站查看
    7. 胡佳晨. 凹凸棒石对重金属污染农田土壤钝化修复效果研究. 广东化工. 2021(11): 117-119 .
    8. 王卓群,邱少芬,孙瑞莲. 有机改性天然矿物钝化土壤重金属研究进展. 环境科学与技术. 2021(11): 101-108 .

    Other cited types(12)

Catalog

    Article views (165) PDF downloads (34) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return