Citation: | YAN Yu, HAN Nai-xu, LU Shui-miao, XIA Xiao-feng, LIN Li, ZHANG Xiu-li. Industrial On-line ICP-OES Analysis of Copper, Cadmium, Cobalt and Iron in Hydrometallurgical Zinc Sulfate Solution[J]. Rock and Mineral Analysis, 2022, 41(1): 153-159. DOI: 10.15898/j.cnki.11-2131/td.202107200080 |
Jia L P, Huang J J, Ma Z L, et al. Research and development trends of hydrometallurgy: An overview based on hydrometallurgy literature from 1975 to 2019[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3147-3160. doi: 10.1016/S1003-6326(20)65450-4
|
Craddock P T. The origins and inspirations of zinc smelting[J]. Journal of Materials Science, 2009, 44(9): 2181-2191. doi: 10.1007/s10853-008-2942-1
|
Shayesteh K, Abbasi P, Fard V V, et al. Simultaneous removal of nickel and cadmium during the cold purification of zinc sulfate solution[J]. Arabian Journal for Science and Engineering, 2020, 45(2): 587-598. doi: 10.1007/s13369-019-04320-9
|
付光, 刘俊场, 曲洪涛, 等. 硫酸锌溶液净化除杂研究现状及趋势[J]. 云南冶金, 2020(2): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ202002005.htm
Fu G, Liu J C, Qu H T, et al. Research status and tendency on purification and impurity removal of zinc sulfate solution[J]. Yunnan Metallurgy, 2020(2): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ202002005.htm
|
Duan N, Jiang L H, Xu F Y, et al. A non-contact original-state online real-time monitoring method for complex liquids in industrial processes[J]. Engineering, 2018, 4(3): 392-397. doi: 10.1016/j.eng.2018.05.005
|
Song S L, Sun W, Wang L, et al. Recovery of cobalt and zinc from the leaching solution of zinc smelting slag[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102777. doi: 10.1016/j.jece.2018.11.022
|
李坦平, 吴宜, 曾利群, 等. 电感耦合等离子体串联质谱法测定电解二氧化锰废渣浸出液中的重金属元素[J]. 岩矿测试, 2020, 39(5): 682-689. doi: 10.15898/j.cnki.11-2131/td.201911230162
Li T P, Wu Y, Zeng L Q, et al. Determination of heavy metal elements in leaching solution of electrolytic manganese dioxide waste residue by inductively coupled plasma-tandem mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 682-689. doi: 10.15898/j.cnki.11-2131/td.201911230162
|
杨丽菊, 卢佐菊, 匡菊美. 提高硫酸锌溶液一段净化脱杂率实践[J]. 云南冶金, 2020, 49(3): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ202003013.htm
Yang L J, Lu Z J, Kuang J M. Practice on increasing of the purification and impurities removal rate in the first section of zinc sulfate solution[J]. Yunnan Metallurgy, 2020, 49(3): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ202003013.htm
|
Lin Y J, Wei S H, Huang C Y. Intelligent manufacturing control systems: The core of smart factory[J]. Procedia Manufacturing, 2019, 39: 389-397. doi: 10.1016/j.promfg.2020.01.382
|
Huang K K, Wu Y M, Long C, et al. Adaptive process monitoring via online dictionary learning and its industrial application[J]. ISA Transactions, 2021, 114: 399-412. doi: 10.1016/j.isatra.2020.12.046
|
黄康利, 袁齐, 林滨钰. 电感耦合等离子体质谱法测定硫酸锌产品中6种痕量元素[J]. 山东化工, 2018, 47(13): 73-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG201813034.htm
Huang K L, Yuan Q, Lin B Y. Determination of six trace elements in zinc sulfate products by inductively coupled plasma mass spectrometry[J]. Shandong Chemical Industry, 2018, 47(13): 73-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG201813034.htm
|
Guo Y G, Zhao H, Han Y L, et al. Simultaneous spectro-photometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 173: 532-536. doi: 10.1016/j.saa.2016.10.003
|
Butcher D J. Recent highlights in graphite furnace atomic absorption spectrometry[J]. Applied Spectroscopy Reviews, 2017, 52(9): 755-773. doi: 10.1080/05704928.2017.1303504
|
Zou Z R, Deng Y J, Hu J, et al. Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation—A review[J]. Analytica Chimica Acta, 2018, 1019: 25-37. doi: 10.1016/j.aca.2018.01.061
|
Zhou F B, Li C G, Yang C H, et al. A spectro-photometric method for simultaneous determination of trace ions of copper, cobalt, and nickel in the zinc sulfate solution by ultraviolet-visible spectrometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117370. doi: 10.1016/j.saa.2019.117370
|
齐妍洁, 张旭, 沈庆峰, 等. 亚硝基R盐分光光度法测定硫酸锌溶液中的钴[J]. 矿冶, 2014, 23(4): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201404024.htm
Qi Y J, Zhang X, Shen Q F, et al. Determination of cobalt in zinc sulfate solution with nitroso-R-salt spectrophotometry[J]. Mining and Metallurgy, 2014, 23(4): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201404024.htm
|
Novaes C G, Bezerra M A, da Silva E G P, et al. A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Microchemical Journal, 2016, 128: 331-346. doi: 10.1016/j.microc.2016.05.015
|
Donati G L, Amais R S, Williams C B. Recent advances in inductively coupled plasma optical emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(7): 1283-1296. doi: 10.1039/C7JA00103G
|
Wilschefski S C, Baxter M R. Inductively coupled plasma mass spectrometry: Introduction to analytical aspects[J]. The Clinical Biochemist Reviews, 2019, 40(3): 115. doi: 10.33176/AACB-19-00024
|
龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340-348. doi: 10.15898/j.cnki.11-2131/td.202011030136
Gong C, Ding Y, Lu H Y, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 40(3): 340-348. doi: 10.15898/j.cnki.11-2131/td.202011030136
|
Velitchkova N S, Velichkov S V, Karadjov M G, et al. Optimization of the operating conditions in inductively coupled plasma optical emission spectrometry[J]. Bulgarian Chemical Communications, 2017, 49: 152-159.
|
贺攀红, 杨珍, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒[J]. 岩矿测试, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048
He P H, Yang Z, Gong Z X. Simultaneous determination of trace arsenic, copper, lead, zinc, nickel and vanadium in soils by hydride generation-inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048
|
Trevelin A M, Marotto R E S, de Castro E V R, et al. Extraction induced by emulsion breaking for determination of Ba, Ca, Mg and Na in crude oil by inductively coupled plasma optical emission spectrometry[J]. Microchemical Journal, 2016, 124: 338-343. doi: 10.1016/j.microc.2015.09.014
|
严子心, 曲景奎, 余志辉, 等. 多谱线拟合-电感耦合等离子体原子发射光谱法测定高纯镍中痕量钴[J]. 分析化学, 2019, 47(3): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903014.htm
Yan Z X, Qu J K, Yu Z H, et al. Multi-spectral fitting-determination of trace cobalt in high purity nickel by inductively coupled plasma atomic emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903014.htm
|
胡健平, 王日中, 杜宝华, 等. 火焰原子吸收光谱法和电感耦合等离子体发射光谱法测定硫化矿中的银铜铅锌[J]. 岩矿测试, 2018, 37(4): 388-395. doi: 10.15898/j.cnki.11-2131/td.201706270110
Hu J P, Wang R Z, Du B H, et al. Determination of silver, copper, lead and zinc in sulfide ores by flame atomic absorption spectrometry and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2018, 37(4): 388-395. doi: 10.15898/j.cnki.11-2131/td.201706270110
|
Bachari A H, Jalali F, Alahyarizadeh G. Investigation of spectral interference effects on determination of uranium concentration in phosphate ore by inductively coupled plasma optical emission spectroscopy[J]. Radiochimica Acta, 2017, 105(2): 95-108. doi: 10.1515/ract-2016-2639
|
赵君威, 梅坛, 鄢国强, 等. 电感耦合等离子体原子发射光谱分析中的光谱干扰及其校正的研究进展[J]. 理化检验(化学分册), 2013, 49(3): 364-369. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201303035.htm
Zhang J W, Mei T, Yan G Q, et al. Recent progress of researches on spectral interference and its correction in ICP-AES analysis[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2013, 49(3): 364-369. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201303035.htm
|
龚琦. 对电感耦合等离子体发射光谱法中一些问题的认识[J]. 冶金分析, 2018, 38(9): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201809005.htm
Gong Q. Understanding of some issues about inductively coupled plasma optical emission spectrometry[J]. Metallurgical Analysis, 2018, 38(9): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201809005.htm
|
Sengupta A, Rajeswari B, Kadam R M, et al. Determination of trace elements in carbon steel by inductively coupled plasma atomic emission spectrometry[J]. Atomic Spectroscopy, 2011, 32(5): 200-205. doi: 10.46770/AS.2011.05.005
|
成勇, 刘力维, 袁金红, 等. 电感耦合等离子体原子发射光谱法测定熔盐废渣中钪和钛[J]. 冶金分析, 2021, 41(7): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202107015.htm
Cheng Y, Liu L W, Yuan J H, et al. Determination of scandium and titanium in molten salt slag by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2021, 41(7): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202107015.htm
|
1. |
张阳阳,王梦园,周伟,汪丹,闫加力. 调理剂对酸性富硒土壤改良效果的初步研究. 资源环境与工程. 2024(01): 34-39+91 .
![]() | |
2. |
李媛媛,焦洪鹏,冯先翠,曹鹏,江海燕,雷满奇. 施用硒内源调控剂对水稻吸收硒、镉和砷的影响. 中国稻米. 2024(02): 18-25 .
![]() | |
3. |
谭卓贤,杜建军,孙星,易琼,徐培智,张木. 石灰、磷酸盐及硅酸盐对土壤硒有效性及水稻累积硒的影响. 江苏农业学报. 2024(03): 450-456 .
![]() | |
4. |
覃惠松,蒋代华,黄雪娇,邓华为,黄金兰,王明释. 有机质对广西酸性富硒土中Se(Ⅳ)吸附解吸特性的影响. 土壤. 2023(02): 363-371 .
![]() | |
5. |
秦王武,邵树勋,夏勇,田弋夫,王大州,余德顺,林剑,林庆华. 水城茶园硒的地球化学特征及富硒茶开发探讨. 地球与环境. 2023(05): 527-536 .
![]() | |
6. |
余蕾,岳蕴辉,张朝青,李慧. 新疆气流床煤气化炉渣的特性研究及在砂质土壤改良中的应用. 现代化工. 2023(S2): 148-152 .
![]() | |
7. |
路丹,黄太庆,陈锦平,廖青,韦燕燕,邢颖,梁潘霞,潘丽萍,江泽普,刘永贤. 施用生物炭对红壤富硒区硒生物有效性的影响. 中国土壤与肥料. 2023(10): 118-126 .
![]() | |
8. |
高晴盈,胡允祝,张辉,陈静静,倪芝芝. 温州市西部山区耕地质量综合评价. 乡村科技. 2023(24): 144-149 .
![]() | |
9. |
杨谨铭,胡岗,范成五,罗沐欣键,秦松. 提高土壤硒生物有效性的技术措施研究进展. 安徽农业科学. 2022(01): 12-14 .
![]() | |
10. |
冯德庆,黄秀声,黄小云,王俊宏,韩海东,陈钟佃,罗涛. 富硒土壤施用特贝钙土壤调理剂对黑麦草产量和硒含量的影响. 黑龙江畜牧兽医. 2022(02): 102-106 .
![]() | |
11. |
李迎春,张磊,尚文郁. 粉末压片-X射线荧光光谱法分析富硒土壤样品中的硒及主次量元素. 岩矿测试. 2022(01): 145-152 .
![]() | |
12. |
次仁旺堆,多吉卫色,索朗次仁,尼玛次仁,边巴次仁,平措朗杰. 西藏山南市乃东区土壤硒分布特征及影响因素. 岩矿测试. 2022(03): 427-436 .
![]() | |
13. |
吴超,孙彬彬,成晓梦,周国华,贺灵,曾道明,梁倍源. 丘陵山区多目标区域地球化学调查不同成因表层土壤代表性研究——以浙江绍兴地区为例. 地质通报. 2022(09): 1539-1549 .
![]() | |
14. |
倪刚,胡承孝,李长印,蔡苗苗,赵小虎. 硒与重金属互作的植物根际过程研究进展. 中国农学通报. 2021(01): 78-83 .
![]() | |
15. |
刘冰权,沙珉,谢长瑜,周强强,魏星星,周梵. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素. 岩矿测试. 2021(05): 740-750 .
![]() | |
16. |
潘丽萍,谭骏,刘斌,邢颖,黄雁飞,陈锦平,刘永贤. 不同粒径贝壳粉对水稻吸收镉与硒的影响. 农业环境科学学报. 2021(10): 2134-2140 .
![]() | |
17. |
朱超,文美兰,刘攀峰,陈斌艳,鲍厚银,赵银强,陈昊,杨奕波. 桂林灵川县典型有机水稻田重金属元素分布特征及污染评价. 现代地质. 2021(05): 1433-1440 .
![]() | |
18. |
王锐,胡小兰,张永文,余飞,朱海山,李瑜. 重庆市主要农耕区土壤Cd生物有效性及影响因素. 环境科学. 2020(04): 1864-1870 .
![]() | |
19. |
刘道荣. 浙西丘陵区不同采样密度富硒土壤评价研究. 华东地质. 2020(02): 177-183 .
![]() | |
20. |
周国华. 富硒土地资源研究进展与评价方法. 岩矿测试. 2020(03): 319-336 .
![]() | |
21. |
王保欣,韦继康,余晓霞,胡荣荣. 浙江慈溪粮食主产区富硒土壤评价方法对比研究. 现代地质. 2020(04): 672-679 .
![]() | |
22. |
王锐,邓海,严明书,张永文,周皎,余飞,李瑜. 基于回归方程的硒元素生物有效性研究. 土壤通报. 2020(05): 1049-1055 .
![]() | |
23. |
张立,姜侠,崔玉军,窦智慧,李瑛,孙振伟. 松嫩平原吕大火房垂直剖面中硒赋存形态及影响因素分析. 地质与资源. 2020(06): 603-608+584 .
![]() | |
24. |
樊建新,曾宇,孙姣霞,潘瑾. 淹水过程中土壤硒的形态转化. 江苏农业科学. 2019(06): 279-283 .
![]() | |
25. |
王昌宇,张素荣,刘继红,邢怡,杨俊泉. 河北省饶阳县富锌、硒特色土地及其生态效应评价. 地质调查与研究. 2019(01): 49-56 .
![]() | |
26. |
许永东,夏曾润. 保水缓控释功能型复合肥的分析. 当代化工. 2019(07): 1531-1534 .
![]() | |
27. |
邢怡,张素荣,刘继红,王昌宇. 农作物根系土对农产品安全的影响分析——以保定东部地区为例. 地质调查与研究. 2019(03): 219-224+234 .
![]() | |
28. |
顾涛,赵信文,雷晓庆,黄长生,曾敏,刘学浩,王节涛. 珠江三角洲崖门镇地区水稻田土壤-植物系统中硒元素分布特征及迁移规律研究. 岩矿测试. 2019(05): 545-555 .
![]() | |
29. |
冯辉,张学君,张群,杜丽娜. 北京大清河流域生态涵养区富硒土壤资源分布特征和来源解析. 岩矿测试. 2019(06): 693-704 .
![]() | |
30. |
况琴,吴山,黄庭,吴代赦,向京. 生物质炭和钢渣对江西丰城典型富硒区土壤硒有效性的调控效果与机理研究. 岩矿测试. 2019(06): 705-714 .
![]() | |
31. |
王锐,余涛,杨忠芳,侯青叶,曾庆良,马宏宏. 富硒土壤硒生物有效性及影响因素研究. 长江流域资源与环境. 2018(07): 1647-1654 .
![]() | |
32. |
王峰,陈玉真,单睿阳,尤志明,陈常颂,臧春荣,余文权. 大田县茶园土壤和茶叶中硒含量及影响因素分析. 茶叶学报. 2018(03): 126-130 .
![]() |