• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
YAN Yu, HAN Nai-xu, LU Shui-miao, XIA Xiao-feng, LIN Li, ZHANG Xiu-li. Industrial On-line ICP-OES Analysis of Copper, Cadmium, Cobalt and Iron in Hydrometallurgical Zinc Sulfate Solution[J]. Rock and Mineral Analysis, 2022, 41(1): 153-159. DOI: 10.15898/j.cnki.11-2131/td.202107200080
Citation: YAN Yu, HAN Nai-xu, LU Shui-miao, XIA Xiao-feng, LIN Li, ZHANG Xiu-li. Industrial On-line ICP-OES Analysis of Copper, Cadmium, Cobalt and Iron in Hydrometallurgical Zinc Sulfate Solution[J]. Rock and Mineral Analysis, 2022, 41(1): 153-159. DOI: 10.15898/j.cnki.11-2131/td.202107200080

Industrial On-line ICP-OES Analysis of Copper, Cadmium, Cobalt and Iron in Hydrometallurgical Zinc Sulfate Solution

More Information
  • Received Date: July 19, 2021
  • Revised Date: August 26, 2021
  • Accepted Date: September 20, 2021
  • Published Date: January 27, 2022
  • HIGHLIGHTS
    (1) The on-line detection of impurity elements can be determined by utilizing the impurity removal process of wet smelting and the characteristics of zinc sulfate solution.
    (2) The factory automated analysis system can replace traditional manual sampling analysis method by optimizing the instrument parameters.
    (3) Spectral interference, linear range, detection limit, and recovery verify the accuracy of the analysis results.
    BACKGROUNDThe determination of impurity elements in hydrometallurgical zinc sulfate solution is helpful to optimize the composition of electrolytes, reduce energy consumption, and accurately feed and improve the purity of smelting metal. Impurity elements in the wet zinc smelting process are usually determined by manual sampling. The sample needs to be diluted before the equipment analysis is performed due to high content of zinc and sulfuric acid, which is difficult to achieve automatic analysis.
    OBJECTIVESIn order to determine the online analysis of impurity elements in the solution of zinc smelting process and meet the current requirements of the hydrometallurgical industry.
    METHODSAn automatic industrial on-line filtration/dilution combined with inductively coupled plasma-optical emission spectrometry (ICP-OES) was used. By optimizing key parameters and selecting appropriate analysis lines, a method for the rapid determination of copper, cadmium, cobalt and iron in zinc smelting solution was developed.
    RESULTSThe experimental results showed that the linear relationship of each element was good, the correlation coefficient was greater than 0.9998, the relative standard deviation was 0.72%-1.39% (n=6), and the spiked recovery was 95%-110%.
    CONCLUSIONSThe factory on-line automatic analysis system can replace traditional manual sampling to achieve automatic analysis. The results of on-line analysis are compared with those of manual sampling in actual production, showing good consistency. This method can be used to fully achieve automatic analysis, simple operation, accurate and reliable results, and is suitable for the analysis of impurity elements in zinc smelting.

  • Jia L P, Huang J J, Ma Z L, et al. Research and development trends of hydrometallurgy: An overview based on hydrometallurgy literature from 1975 to 2019[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3147-3160. doi: 10.1016/S1003-6326(20)65450-4
    Craddock P T. The origins and inspirations of zinc smelting[J]. Journal of Materials Science, 2009, 44(9): 2181-2191. doi: 10.1007/s10853-008-2942-1
    Shayesteh K, Abbasi P, Fard V V, et al. Simultaneous removal of nickel and cadmium during the cold purification of zinc sulfate solution[J]. Arabian Journal for Science and Engineering, 2020, 45(2): 587-598. doi: 10.1007/s13369-019-04320-9
    付光, 刘俊场, 曲洪涛, 等. 硫酸锌溶液净化除杂研究现状及趋势[J]. 云南冶金, 2020(2): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ202002005.htm

    Fu G, Liu J C, Qu H T, et al. Research status and tendency on purification and impurity removal of zinc sulfate solution[J]. Yunnan Metallurgy, 2020(2): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ202002005.htm
    Duan N, Jiang L H, Xu F Y, et al. A non-contact original-state online real-time monitoring method for complex liquids in industrial processes[J]. Engineering, 2018, 4(3): 392-397. doi: 10.1016/j.eng.2018.05.005
    Song S L, Sun W, Wang L, et al. Recovery of cobalt and zinc from the leaching solution of zinc smelting slag[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102777. doi: 10.1016/j.jece.2018.11.022
    李坦平, 吴宜, 曾利群, 等. 电感耦合等离子体串联质谱法测定电解二氧化锰废渣浸出液中的重金属元素[J]. 岩矿测试, 2020, 39(5): 682-689. doi: 10.15898/j.cnki.11-2131/td.201911230162

    Li T P, Wu Y, Zeng L Q, et al. Determination of heavy metal elements in leaching solution of electrolytic manganese dioxide waste residue by inductively coupled plasma-tandem mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 682-689. doi: 10.15898/j.cnki.11-2131/td.201911230162
    杨丽菊, 卢佐菊, 匡菊美. 提高硫酸锌溶液一段净化脱杂率实践[J]. 云南冶金, 2020, 49(3): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ202003013.htm

    Yang L J, Lu Z J, Kuang J M. Practice on increasing of the purification and impurities removal rate in the first section of zinc sulfate solution[J]. Yunnan Metallurgy, 2020, 49(3): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ202003013.htm
    Lin Y J, Wei S H, Huang C Y. Intelligent manufacturing control systems: The core of smart factory[J]. Procedia Manufacturing, 2019, 39: 389-397. doi: 10.1016/j.promfg.2020.01.382
    Huang K K, Wu Y M, Long C, et al. Adaptive process monitoring via online dictionary learning and its industrial application[J]. ISA Transactions, 2021, 114: 399-412. doi: 10.1016/j.isatra.2020.12.046
    黄康利, 袁齐, 林滨钰. 电感耦合等离子体质谱法测定硫酸锌产品中6种痕量元素[J]. 山东化工, 2018, 47(13): 73-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG201813034.htm

    Huang K L, Yuan Q, Lin B Y. Determination of six trace elements in zinc sulfate products by inductively coupled plasma mass spectrometry[J]. Shandong Chemical Industry, 2018, 47(13): 73-74. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG201813034.htm
    Guo Y G, Zhao H, Han Y L, et al. Simultaneous spectro-photometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 173: 532-536. doi: 10.1016/j.saa.2016.10.003
    Butcher D J. Recent highlights in graphite furnace atomic absorption spectrometry[J]. Applied Spectroscopy Reviews, 2017, 52(9): 755-773. doi: 10.1080/05704928.2017.1303504
    Zou Z R, Deng Y J, Hu J, et al. Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation—A review[J]. Analytica Chimica Acta, 2018, 1019: 25-37. doi: 10.1016/j.aca.2018.01.061
    Zhou F B, Li C G, Yang C H, et al. A spectro-photometric method for simultaneous determination of trace ions of copper, cobalt, and nickel in the zinc sulfate solution by ultraviolet-visible spectrometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117370. doi: 10.1016/j.saa.2019.117370
    齐妍洁, 张旭, 沈庆峰, 等. 亚硝基R盐分光光度法测定硫酸锌溶液中的钴[J]. 矿冶, 2014, 23(4): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201404024.htm

    Qi Y J, Zhang X, Shen Q F, et al. Determination of cobalt in zinc sulfate solution with nitroso-R-salt spectrophotometry[J]. Mining and Metallurgy, 2014, 23(4): 97-100. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201404024.htm
    Novaes C G, Bezerra M A, da Silva E G P, et al. A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Microchemical Journal, 2016, 128: 331-346. doi: 10.1016/j.microc.2016.05.015
    Donati G L, Amais R S, Williams C B. Recent advances in inductively coupled plasma optical emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(7): 1283-1296. doi: 10.1039/C7JA00103G
    Wilschefski S C, Baxter M R. Inductively coupled plasma mass spectrometry: Introduction to analytical aspects[J]. The Clinical Biochemist Reviews, 2019, 40(3): 115. doi: 10.33176/AACB-19-00024
    龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340-348. doi: 10.15898/j.cnki.11-2131/td.202011030136

    Gong C, Ding Y, Lu H Y, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 40(3): 340-348. doi: 10.15898/j.cnki.11-2131/td.202011030136
    Velitchkova N S, Velichkov S V, Karadjov M G, et al. Optimization of the operating conditions in inductively coupled plasma optical emission spectrometry[J]. Bulgarian Chemical Communications, 2017, 49: 152-159.
    贺攀红, 杨珍, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒[J]. 岩矿测试, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048

    He P H, Yang Z, Gong Z X. Simultaneous determination of trace arsenic, copper, lead, zinc, nickel and vanadium in soils by hydride generation-inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048
    Trevelin A M, Marotto R E S, de Castro E V R, et al. Extraction induced by emulsion breaking for determination of Ba, Ca, Mg and Na in crude oil by inductively coupled plasma optical emission spectrometry[J]. Microchemical Journal, 2016, 124: 338-343. doi: 10.1016/j.microc.2015.09.014
    严子心, 曲景奎, 余志辉, 等. 多谱线拟合-电感耦合等离子体原子发射光谱法测定高纯镍中痕量钴[J]. 分析化学, 2019, 47(3): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903014.htm

    Yan Z X, Qu J K, Yu Z H, et al. Multi-spectral fitting-determination of trace cobalt in high purity nickel by inductively coupled plasma atomic emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 423-428. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201903014.htm
    胡健平, 王日中, 杜宝华, 等. 火焰原子吸收光谱法和电感耦合等离子体发射光谱法测定硫化矿中的银铜铅锌[J]. 岩矿测试, 2018, 37(4): 388-395. doi: 10.15898/j.cnki.11-2131/td.201706270110

    Hu J P, Wang R Z, Du B H, et al. Determination of silver, copper, lead and zinc in sulfide ores by flame atomic absorption spectrometry and inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2018, 37(4): 388-395. doi: 10.15898/j.cnki.11-2131/td.201706270110
    Bachari A H, Jalali F, Alahyarizadeh G. Investigation of spectral interference effects on determination of uranium concentration in phosphate ore by inductively coupled plasma optical emission spectroscopy[J]. Radiochimica Acta, 2017, 105(2): 95-108. doi: 10.1515/ract-2016-2639
    赵君威, 梅坛, 鄢国强, 等. 电感耦合等离子体原子发射光谱分析中的光谱干扰及其校正的研究进展[J]. 理化检验(化学分册), 2013, 49(3): 364-369. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201303035.htm

    Zhang J W, Mei T, Yan G Q, et al. Recent progress of researches on spectral interference and its correction in ICP-AES analysis[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2013, 49(3): 364-369. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201303035.htm
    龚琦. 对电感耦合等离子体发射光谱法中一些问题的认识[J]. 冶金分析, 2018, 38(9): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201809005.htm

    Gong Q. Understanding of some issues about inductively coupled plasma optical emission spectrometry[J]. Metallurgical Analysis, 2018, 38(9): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201809005.htm
    Sengupta A, Rajeswari B, Kadam R M, et al. Determination of trace elements in carbon steel by inductively coupled plasma atomic emission spectrometry[J]. Atomic Spectroscopy, 2011, 32(5): 200-205. doi: 10.46770/AS.2011.05.005
    成勇, 刘力维, 袁金红, 等. 电感耦合等离子体原子发射光谱法测定熔盐废渣中钪和钛[J]. 冶金分析, 2021, 41(7): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202107015.htm

    Cheng Y, Liu L W, Yuan J H, et al. Determination of scandium and titanium in molten salt slag by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2021, 41(7): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202107015.htm
  • Cited by

    Periodical cited type(5)

    1. 张随安,杨中瑞,段玉宇,杨凯淇,胡智杰,杨春,侯莎. 火焰原子吸收光谱法测定土壤中游离铁含量. 岩矿测试. 2024(04): 614-621 . 本站查看
    2. 李莹莹,俞晓峰,韩乃旭,李鹰,李剑,韩占华,王庆祥. 光度滴定在线分析系统测定锌电解液中硫酸及锌离子含量. 中国有色冶金. 2024(05): 60-67 .
    3. 安小康,张敏,寇潇潇,雷蕾,马育华. EDTA滴定法测定含高锰、高铝的硫酸锌溶液中锌. 冶金分析. 2024(11): 97-102 .
    4. 张鑫,周圣兵,陈飞. 高浓度锌溶液分析检测优化. 铜业工程. 2023(01): 163-166 .
    5. 许志贤,姚继军,胡建坤,夏晓峰,卢水淼,梅华灯,李伟东. 半导体工业原材料分析检测技术现状与进展. 微纳电子与智能制造. 2022(01): 75-81 .

    Other cited types(2)

Catalog

    Article views (429) PDF downloads (37) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return