• Core Journal of China
  • DOAJ
  • Scopus
  • Chinese Scientific and Technical Papers and Citations (CSTPC)
  • Chinese Science Citation Database (CSCD)
HE Xiuhui, TANG Shuaishuai, CHENG Jiang, SHI Youchang, LU Qianshu, WANG Yinjian, LAN Mingguo. Determination of Iodine in Geochemical Samples by ICP-MS with Sodium Carbonate-Zinc Oxide Semi-melting[J]. Rock and Mineral Analysis, 2022, 41(4): 606-613. DOI: 10.15898/j.cnki.11-2131/td.202106090074
Citation: HE Xiuhui, TANG Shuaishuai, CHENG Jiang, SHI Youchang, LU Qianshu, WANG Yinjian, LAN Mingguo. Determination of Iodine in Geochemical Samples by ICP-MS with Sodium Carbonate-Zinc Oxide Semi-melting[J]. Rock and Mineral Analysis, 2022, 41(4): 606-613. DOI: 10.15898/j.cnki.11-2131/td.202106090074

Determination of Iodine in Geochemical Samples by ICP-MS with Sodium Carbonate-Zinc Oxide Semi-melting

More Information
  • Received Date: June 08, 2021
  • Revised Date: July 27, 2021
  • Accepted Date: November 04, 2021
  • Available Online: September 08, 2022
  • HIGHLIGHTS
    (1) The semi-melting method of sodium carbonate-zinc oxide was used to treat the sample, which solved the problem of incomplete melting caused by the polyvalent state coexistence of iodine in the sample.
    (2) By optimizing the analytical medium and internal standard elements, the problem of poor stability and accuracy of sample determination by ICP-MS was solved.
    (3) The method has high efficiency and reliable results, which is suitable for the analysis of geochemical survey samples.
    BACKGROUND

    The determination of iodine in geochemical samples by inductively coupled plasma-mass spectrometry (ICP-MS) is treated mainly by closed sample melting, mixed acid solution, alkali fusion and semi-melting method. However, due to the complex existent morphology of iodine in soil and sediment samples, including periodate, iodate and iodide ions, and the first ionization energy of iodine being high as a halogen group element, there are problems such as incomplete dissolution, strong memory effect and poor precision during sample processing and measurement.

    OBJECTIVES

    To improve the determination of iodine in geochemical samples by ICP-MS.

    METHODS

    The samples were treated by sodium carbonate-zinc oxide semi-melting method, extracted with boiling water-ethanol, and separated by 732 cation exchange resin. Following this, iodine in the solution was determined by ICP-MS using an internal standard method.

    RESULTS

    The optimized detection limit of iodine was 0.045μg/g, the lower limit of detection was 0.15μg/g. The precision (RSD, n=12) and the accuracy (△logC) of the method were ≤5.93% and ≤0.01, respectively, which satisfied the analysis standards of geochemical survey sample.

    CONCLUSIONS

    This method meets the requirements of sample analysis for geochemical investigation, and can be used for the analysis of iodine in large quantities of soil and sediment samples.

  • [1]
    《岩石矿物分析》编委会. 岩石矿物分析[M]. 北京: 地质出版社, 1974: 148.

    The editorial committee of 《Rock and Mineral Analysis》. Rock and mineral analysis[M]. Beijing: Geological Publishing House, 1974: 148.
    [2]
    程素敏, 王娟, 张岩, 等. 分光光度法测定土壤中碘的方法改进[J]. 无机分析化学, 2015, 5(4): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201504012.htm

    Cheng S M, Wang J, Zhang Y. Method improvement on the determination of iodine in soil by spectrophotometry[J]. Chinese Journal of Analytical Chemistry, 2015, 5(4): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201504012.htm
    [3]
    刘德慧. 汞型活性碳纸富集——XRF法测定地质样品中的痕量碘[J]. 岩矿测试, 1990, 9(3): 175-178. http://www.ykcs.ac.cn/cn/article/id/ykcs_19900361

    Liu D H. Preconcentration of trace iodine with a disk of[Hg2+·ACP] and determination by XRFA[J]. Rock and Mineral Analysis, 1990, 9(3): 175-178. http://www.ykcs.ac.cn/cn/article/id/ykcs_19900361
    [4]
    方容, 佘小林, 钟展环. 几种样品中溴与碘的离子色谱安培法测定[J]. 分析化学, 1993, 21(3): 364.

    Fang R, She X L, Zhong Z H. The determination of bromine and iodine in several samples by ampere in the ion chromatography[J]. Chinese Journal of Analytical Chemistry, 1993, 21(3): 364.
    [5]
    李冰, 何红蓼, 史世云, 等. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷Ⅰ. 不同阴离子形态及不同介质对分析信号的影响[J]. 岩矿测试, 2001, 20(3): 161-166. http://www.ykcs.ac.cn/cn/article/id/ykcs_20010351

    Li B, He H L, Shi S Y, et al. Determination of trace iodine, bromine, selenium and arsenic in geological samples by inductively coupled plasma mass spectrometry. Ⅰ. Singal response of different anion species in mediums[J]. Rock and Mineral Analysis, 2001, 20(3): 161-166. http://www.ykcs.ac.cn/cn/article/id/ykcs_20010351
    [6]
    李冰, 史世云, 何红蓼, 等. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷Ⅱ. 土壤及沉积物标准物质分析[J]. 岩矿测试, 2001, 20(4): 241-246. http://www.ykcs.ac.cn/cn/article/id/ykcs_20010471

    Li B, Shi S Y, He H L, et al. Determination of trace iodine, bromine, selenium and arsenic in geological samples by inductively coupled plasma mass spectrometry Ⅱ. Analysis of soil and sediment standard reference materials[J]. Rock and Mineral Analysis, 2001, 20(4): 241-246. http://www.ykcs.ac.cn/cn/article/id/ykcs_20010471
    [7]
    沈璐佳, 董亚红. 电感耦合等离子体质谱法同时测定矿泉水中痕量溴和碘[J]. 无机分析化学, 2012, 2(4): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201204010.htm

    Shen L J, Dong Y H. Simultaneous determination of bromine and iodine in mineral water samples by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2012, 2(4): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201204010.htm
    [8]
    何红蓼, 李冰, 韩丽荣, 等. 封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J]. 分析试验室, 2002, 21(5): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200205003.htm

    He H L, Li B, Han L R, et al. Evaluation of determining 47 elements in geological samples by pressurized acid degistion-ICP-MS[J]. Chinese Journal of Analysis Laboratory, 2002, 21(5): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200205003.htm
    [9]
    阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055

    Yang G Y, Tang P Y, Zhang J, et al. Determination of boron, iodine, tin and germanium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159. doi: 10.15898/j.cnki.11-2131/td.201805070055
    [10]
    万兵, 孙立欣, 贾雨薇, 等. 电感耦合等离子体质谱(ICP-MS)法测定地球化学样品中的碘[J]. 中国无机分析化学, 2017, 7(4): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201704013.htm

    Wan B, Sun L X, Jia Y W, et al. Determination of iodine in geochemical samples by inductively coupled plasma-mass spectrometry (ICP-MS)[J]. China Inorganic Analytical Chemistry, 2017, 7(4): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201704013.htm
    [11]
    安华娟, 张明杰, 戴雪峰, 等. 电感耦合等离子体质谱法测定地质样品中的碘[J]. 理化检验(化学分册), 2010, 46(6): 692-693. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201006039.htm

    An H J, Zhang M J, Dai X F, et al. Inductively coupled plasma-mass spectrometry for the determination of trace iodine in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2010, 46(6): 692-693. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201006039.htm
    [12]
    宋萍, 温宏利. 液氮冷凝吸收热解-电感耦合等离子体质谱法测定岩石土壤沉积物中的溴碘[J]. 岩矿测试, 2016, 35(4): 384-388. doi: 10.15898/j.cnki.11-2131/td.2016.04.008

    Song P, Wen H L. Determination of bromine and iodine in rock and soil sediment by liquid nitrogen condensation absorption pyrolysis-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(4): 384-388. doi: 10.15898/j.cnki.11-2131/td.2016.04.008
    [13]
    高孝礼, 黄光明, 张培新, 等. 电感耦合等离子体质谱法测定磷矿石中的碘[J]. 岩矿测试, 2009, 28(5): 423-426. http://www.ykcs.ac.cn/cn/article/id/ykcs_20090505

    Gao X L, Huang G M, Zhang P X, et al. Determination of iodine in phosphate ore by inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2009, 28(5): 423-426. http://www.ykcs.ac.cn/cn/article/id/ykcs_20090505
    [14]
    金倩, 李晓敬, 陈庆芝, 等. 碱熔-强酸型阳离子交换树脂分离-电感耦合等离子体质谱法测定地质样品中硼锗钼锡碘钨[J]. 冶金分析, 2020, 40(7): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007011.htm

    Jin Q, Li X J, Chen Q Z, et al. Determination of boron, germanium, molybdenum, tin, iodine and tungsten in geological samples by alkaline fusion-strong acid cation exchange resin separation-inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2020, 40(7): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007011.htm
    [15]
    安国荣, 张启云, 陈辉, 等. ICP-MS测定溴、碘、砷和硒在多目标样品中的应用[J]. 光谱实验室, 2013, 30(6): 3306-3308. https://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201306143.htm

    An G R, Zhang Q Y, Chen H, et al. Determination of bromine, iodine, arsenic and selenium in multi-purpose by ICP-MS[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(6): 3306-3308. https://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201306143.htm
    [16]
    邰文亮, 王攀峰, 王斌, 等. 等离子体质谱法测定土壤样品中的溴和碘[J]. 世界核地质科学, 2020, 37(4): 323-328. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD202004009.htm

    Tai W L, Wang P F, Wang B, et al. Simultaneous determination of bromide and iodine in soil by inductively coupled plasma-mass spectrometry[J]. World Nuclear Geoscience, 2020, 37(4): 323-328. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD202004009.htm
    [17]
    冯先进, 屈太原. 电感耦合等离子体质谱法(ICP-MS)最新应用进展[J]. 中国无机分析化学, 2011, 1(1): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201101013.htm

    Feng X J, Qu T Y. The last application progress of inductively coupled plasma-mass spectrometry[J]. China Inorganic Analytical Chemistry, 2011, 1(1): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201101013.htm
    [18]
    任冬, 周小琳, 宗有银, 等. 封闭酸溶-盐酸羟胺还原ICP-MS法测定土壤沉积物岩石中的痕量碘[J]. 岩矿测试, 2019, 38(6): 734-740. doi: 10.15898/j.cnki.11-2131/td.201901170009

    Ren D, Zhou X L, Zong Y Y, et al. Determination of trace iodine in soils, sediments and rocks by ICP-MS after pressurized acid digestion-hydroxylamine hydrochloride reduction[J]. Rock and Mineral Analysis, 2019, 38(6): 734-740. doi: 10.15898/j.cnki.11-2131/td.201901170009
    [19]
    马景治, 胡伟康, 董学兵, 等. 树脂交换分离-电感耦合等离子体质谱法测定土壤中碘硼锗锡砷锑铌钽钨[J]. 分析仪器, 2021(3): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ202103007.htm

    Ma J Z, Hu W K, Dong X B, et al. Determination of iodine, boron, germanium, tin, arsenic, antimony, niobium, tantalum and tungsten in soil by ICP-MS with resin exchange separation[J]. Analutical Instru-mentation, 2021(3): 33-41. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ202103007.htm
    [20]
    王月华. 电感耦合等离子体质谱法测定土壤中的碘[J]. 新疆有色金属, 2020, 43(2): 96-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS202002041.htm
  • Cited by

    Periodical cited type(4)

    1. 李飞,郭家泽,杨永平,朱攀,陈金伟,段文. 昆明市碧鸡街道某村土壤样品中碘含量的测定. 化工设计通讯. 2025(01): 121-123 .
    2. 黄锐敏,吴智威,郑云云,黄崇耀. 氟化氢铵消解-甲烷增敏-电感耦合等离子体质谱法测定土壤中的碘. 分析科学学报. 2024(01): 105-110 .
    3. 鲁银鹏,孟郁苗,黄小文,王丛林,杨秉阳,谭侯铭睿,谢欢. 宁芜盆地玢岩型铁矿尾矿元素与矿物组成特征. 岩矿测试. 2024(02): 259-269 . 本站查看
    4. 李月娥,孟庆俊,李昌平,刘淼,徐辉,谢楠,曹恩伟,张晓赟,蒋思丝,顾晓明,曹珣. 电感耦合等离子体质谱(ICP-MS)法测定土壤中的碘. 中国无机分析化学. 2023(06): 549-555 .

    Other cited types(0)

Catalog

    Article views (203) PDF downloads (38) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return