Citation: | LI Xiaoyun, WANG Yu, JIN Chan, ZHANG Linjuan, WANG Jianqiang. Determination of 8 Metal Elements in Soil by High-resolution Inductively Coupled Plasma-Mass Spectrometry with Microwave Digestion[J]. Rock and Mineral Analysis, 2022, 41(3): 374-383. DOI: 10.15898/j.cnki.11-2131/td.202106090073 |
Microwave digestion combined with inductively coupled plasma-mass spectrometry (ICP-MS) is a commonly used method for the determination of metal elements in soil samples. Different solvents can be used in the pretreatment, and the digestion method has a great influence on the accuracy of the analysis results. In addition, the accuracy of the results will be affected by the interference in the determination of some elements by ICP-MS.
To accurately determine metal elements in soil samples by high resolution-inductively coupled plasma-mass spectrometry (HR-ICP-MS).
Soil samples were digested by microwave using three different solvents, and 8 metal elements (Cr, Co, Ni, Cu, Zn, Pb, Cd and U) were determined by HR-ICP-MS. The digestion effects of the three acid digestion methods using different amounts of nitric acid, hydrochloric acid and hydrofluoric acid on certified soil reference materials were studied, and the optimal pretreatment procedure was determined.
The proposed procedures have been verified by national soil reference materials. It was found that the measured values of digestion method Ⅰ(6mL HNO3+3mL HCl+3mL HF) and digestion method Ⅱ(2mL HNO3+6mL HCl+1mL HF) were consistent with the certified values, using HR-ICP-MS without interference correction. The detection limits of both procedures were 0.001-0.715μg/g. The relative standard deviations (RSD,
The two preferred procedures have high applicability and reliability, and can be used for the direct determination of 8 metal elements in soil samples.
[1] |
Štofejová L, Fazekaš J, Fazekašová D. Analysis of heavy metal content in soil and plants in the dumping ground of magnesite mining factory Jelšava—Lubeník (Slovakia)[J]. Sustainability, 2021, 13(8): 4508-4521. doi: 10.3390/su13084508
|
[2] |
Wang Z H, Qin H Y, Liu X Y. Health risk assessment of heavy metals in the soil-water-rice system around the Xiazhuang uranium mine, China[J]. Environmental Science and Pollution Research, 2019, 26(6): 5904-5912. doi: 10.1007/s11356-018-3955-1
|
[3] |
代鹏飞, 黄德娟, 王帅, 等. 某铀矿区农田土壤重金属污染综合评价[J]. 土壤通报, 2021, 52(1): 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202101026.htm
Dai P F, Huang D J, Wang S, et al. Determination and comprehensive evaluation of heavy metal pllution of farmland soil in a uranium mining area[J]. Chinese Journal of Soil Science, 2021, 52 (1): 198-202. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202101026.htm
|
[4] |
Xu J W, Liu C, Hsu P C, et al. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry[J]. Nature Communications, 2019, 10(1): 2440. doi: 10.1038/s41467-019-10472-x
|
[5] |
任兰, 胡晓乐, 吴丽娟. 石墨消解-火焰原子吸收光谱法测定土壤和沉积物中铜、锌、镍、铬[J]. 化学分析计量, 2018, 27(2): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201802011.htm
Ren L, Hu X L, Wu L J. Determination of Cu, Zn, Ni, Cr in soil and sediment by graphite digestion-flame atomic absorption spectrometry[J]. Chemical Analysis and Meterage, 2018, 27(2): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201802011.htm
|
[6] |
杨叶琴, 赵昌平, 赵杰. 微波消解-电感耦合等离子体原子发射光谱法测定土壤中8种金属元素的含量[J]. 理化检验(化学分册), 2019, 55(1): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201901013.htm
Yang Y Q, Zhao C P, Zhao J, et al. Determination of eight heavy metal elements in soil by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(1): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201901013.htm
|
[7] |
Martins C A, Scheffler G L, Pozebon D. Straight forward determination of U, Th, and Hf at trace levels using ultrasonic nebulization and axial view ICP-OES[J]. Analytical Methods, 2016, 8(3): 504-509. doi: 10.1039/C5AY02932E
|
[8] |
赵志飞, 任小荣, 李策, 等. 氧气反应模式-电感耦合等离子体串联质谱法测定土壤中的镉[J]. 岩矿测试, 2021, 40(1): 95-102. doi: 10.15898/j.cnki.11-2131/td.202003150034
Zhao Z F, Ren X R, Li C, et al. Determination of cadmium in soil samples by ICP-MS/MS using oxygen reaction mode[J]. Rock and Mineral Analysis, 2021, 40(1): 95-102. doi: 10.15898/j.cnki.11-2131/td.202003150034
|
[9] |
黄金松, 李正鹤, 王佳翰. 微波消解-ICP-MS测定海洋沉积物中的稀土元素[J]. 化学试剂, 2021, 43(4): 515-519. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ202104021.htm
Huang J S, Li Z H, Wang J H. Determination of rare earth elements in marine sediments by microwave digestion ICP-MS[J]. Chemical Reagents, 2021, 43(4): 515-519. https://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ202104021.htm
|
[10] |
邱东平, 姚旭松, 赵丽, 等. 石墨仪消解-ICP-MS法测定土壤中9种金属的方法探讨[J]. 中国测试, 2020, 46(11): 70-75. doi: 10.11857/j.issn.1674-5124.2020020056
Qiu D P, Yao X S, Zhao L, et al. Discussion on detection method of 9 metals in soil by graphite instrument digestion-ICP-MS[J]. China Measurement & Test, 2020, 46(11): 70-75. doi: 10.11857/j.issn.1674-5124.2020020056
|
[11] |
Venus M, Puntaric D, Gvozdic V, et al. Determinations of uranium concentrations in soil, water, vegetables and biological samples from inhabitants of war affected areas in eastern Croatia (ICP-MS method)[J]. Journal of Environmental Radioactivity, 2019, 203: 147-153. doi: 10.1016/j.jenvrad.2019.03.004
|
[12] |
孙朝阳, 董利明, 贺颖婷, 等. 电感耦合等离子体质谱法测定地质样品中钪镓锗铟镉铊时的干扰及其消除方法[J]. 理化检验(化学分册), 2016, 52(9): 1026-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201609007.htm
Sun C Y, Dong L M, He Y T, et al. Elimination of interferences in ICP-MS determination of Sc, Ga, Ge, In, Cd and Tl in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(9): 1026-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201609007.htm
|
[13] |
He D, Zhu Z L, Miao X, et al. Determination of trace cadmium in geological samples by membrane desolvation inductively coupled plasma mass spectrometry[J]. Microchemical Journal, 2019, 148: 561-567. doi: 10.1016/j.microc.2019.05.042
|
[14] |
陈菲菲, 冉敬, 徐国栋, 等. 碳酸盐岩样品中镍和钪的电感耦合等离子体质谱分析与干扰校正方法[J]. 岩矿测试, 2021, 40(2): 187-195. doi: 10.15898/j.cnki.11-2131/td.202005310079
Chen F F, Ran J, Xu G D, et al. Inductively coupled plasma-mass spectrometric analysis of nickel and scandium in carbonate rock samples and interference correction methods[J]. Rock and Mineral Analysis, 2021, 40(2): 187-195. doi: 10.15898/j.cnki.11-2131/td.202005310079
|
[15] |
金倩, 李晓敬, 陈庆芝, 等. 碱熔-强酸型阳离子交换树脂分离-电感耦合等离子体质谱法测定地质样品中硼锗钼锡碘钨[J]. 冶金分析, 2020, 40(7): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007011.htm
Jin Q, Li X J, Chen Q Z, et al. Determination of boron, germanium, molybdenum, tin, iodine and tungsten in geological samples by alkaline fusion-strong acid cation[J]. Metallurrgical Analysis, 2020, 40(7): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202007011.htm
|
[16] |
程小会, 邓敬颂. ICP-MS法测定土壤中12种金属元素时的样品前处理方法[J]. 化学分析计量, 2019, 28(4): 115-118. doi: 10.3969/j.issn.1008-6145.2019.04.028
Cheng X H, Deng J S. Comparation of pretreatment methods in determination of 12 metal elements in soil by inductively coupled plasma mass spectrometry[J]. Chemical Analysis and Meterage, 2019, 28(4): 115-118. doi: 10.3969/j.issn.1008-6145.2019.04.028
|
[17] |
王籼铂, 李义连, 逯雨, 等. 电热板消解不同酸体系对土壤中6种金属元素测定的影响研究[J]. 安全与环境工程, 2019, 26(4): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201904009.htm
Wang X B, Li Y L, Lu Y, et al. Effect of different acid systems on determination of six heavy metal elements in soil by electrothermal plate digestion[J]. Safety and Environmental Engineering, 2019, 26(4): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201904009.htm
|
[18] |
许园园, 刘幽燕, 邓超冰, 等. 水系沉积物金属分析前处理方法[J]. 中国环境监测, 2018, 34(2): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201802015.htm
Xu Y Y, Liu Y Y, Deng C B, et al. Pretreatment method for heavy metal analysis of stream sediment[J]. Environmental Monitoring in China, 2018, 34(2): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201802015.htm
|
[19] |
廖菽欢, 赵志南, 严冬, 等. 常压硫酸体系ICP-MS法测定土壤及沉积物中16种稀土元素及Th和U[J]. 环境化学, 2020, 39(1): 271-274. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202001029.htm
Liao S H, Zhao Z N, Yan D, et al. Determination of 16 rare earth elements and Th and U in soil and sediment by ICP-MS under atmospheric pressure sulfuric acid[J]. Environmental Chemistry, 2020, 39(1): 271-274. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202001029.htm
|
[20] |
孙晓慧, 李章, 刘希良. 微波消解-电感耦合等离子体原子发射光谱法测定土壤和水系沉积物中15种组分[J]. 冶金分析, 2014, 34(11): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201411011.htm
Sun X H, Li Z, Liu X L. Determination of fifteen components in soil and stream sediment by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2014, 34(11): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201411011.htm
|
[21] |
王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 305-314. doi: 10.15898/j.cnki.11-2131/td.202006050085
Wang J H, Li Z H, Yang F, et al. Simultaneous determination of 48 elements in marine sediments by ICP-MS with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(2): 305-314. doi: 10.15898/j.cnki.11-2131/td.202006050085
|
[22] |
王佳翰, 李正鹤, 黄金松, 等. 微波消解-ICP-MS同时测定海洋沉积物中50种元素[J]. 海洋环境科学, 2021, 40(4): 611-618, 624. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202104018.htm
Wang J H, Li Z H, Huang J S, et al. Simultaneous determination of 50 elements in marine sediments by microwave digestion ICP-MS[J]. Marine Environ-mental Science, 2021, 40(4): 611-618, 624. https://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ202104018.htm
|
[23] |
杨辉, 王书言, 黄继勇, 等. 同时检测土壤中铅镉铬汞砷金属元素含量方法的优化[J]. 河南科技大学学报(自然科学版), 2020, 41(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX202001014.htm
Yang H, Wang S Y, Huang J Y, et al. Optimization of simultaneous detection method for heavy metal elements content of Pb, Cd, Cr, Hg and As in soil[J]. Journal of Henan University of Science and Technology (Natural Science), 2020, 41(1): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX202001014.htm
|
[24] |
黄晓琴. 微波消解法测试土壤金属含量的方法学研究[J]. 湖北农业科学, 2019, 58(17): 113-115, 118. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201917031.htm
Huang X Q. Study on the methodology of determination of heavy metal content in soil by microwave digestion[J]. Hubei Agricultural Sciences, 2019, 58(17): 113-115, 118. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201917031.htm
|
[25] |
张祎玮, 蒋俊平, 李浩, 等. 微波消解-电感耦合等离子体质谱法测定土壤中稀土元素条件优化[J]. 岩石矿物学杂志, 2021, 40(3): 605-613. doi: 10.3969/j.issn.1000-6524.2021.03.014
Zhang Y W, Jiang J P, Li H, et al. Optimization of microwave digestion inductively coupled plasma mass spectrometry for determination of rare earth elements in soil[J]. Acta Petrologica et Mineralogica, 2021, 40(3): 605-613. doi: 10.3969/j.issn.1000-6524.2021.03.014
|
[26] |
张玲, 叶红梅, 王刚. 微波消解法测定沉积物中5种金属元素的前处理技术研究[J]. 资源与环境科学, 2013(7): 224-225, 227. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201307154.htm
Zhang L, Ye H M, Wang G. Sample pretreatment methods for determination of 5 kind of heavy metal elements in sediment by microwave digestion[J]. Modern Agricultural Science and Technology, 2013(7): 224- 225, 227. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHE201307154.htm
|
[27] |
Kiruba K, Satyanarayanan M, Sawant S S, et al. New soil reference material validation for trace and rare-earth elements by high-resolution inductively coupled plasma mass spectrometry[J]. MAPAN—Journal of Metrology Society of India, 2020, 36(1): 147-156.
|
[28] |
袁源, 赵平, 陈海杰, 等. 高分辨电感耦合等离子体质谱(HR-ICP-MS)法测定土壤污染状况调查样品中的49种元素[J]. 中国无机分析化学, 2021, 11(1): 12-19.
Yuan Y, Zhao P, Chen H J, et al. Determination of 49 elements in samples of the soil contamination investigation by high resolution inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(1): 12-19.
|
[29] |
马小玲, 邓凤玉, 刘颖. HR-ICP-MS研究黄河三个连续区域段表层沉积物中金属污染的空间分布和季节变化[J]. 光谱学与光谱分析, 2016, 36(8): 2705-2711. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201608070.htm
Ma X L, Deng F Y, Liu Y. Study on spatial distribution and seasonal variations of trace metal contamination in sediments from the three adjacent areas of the Yellow River using HR-ICP-MS[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2705-2711. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201608070.htm
|
[30] |
Huang Z Y, Ni Y Y, Wang H, et al. Simultaneous determination of ultra-trace level 237Np and Pu isotopes in soil and sediment samples by SF-ICP-MS with a single column chromatographic separation[J]. Microchemical Journal, 2019, 148: 597-604. doi: 10.1016/j.microc.2019.05.044
|
[31] |
张彦辉, 张良圣, 常阳, 等. 增压-微波消解电感耦合等离子体质谱法测定含难溶矿物岩石样品中的微量元素[J]. 铀矿地质, 2018, 34(2): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201802006.htm
Zhang Y H, Zhang L S, Chang Y, et al. Determining trace elements in rock samples containing refractory minerals by pressurize-microwave inductively coupled plasma mass spectrometry[J]. Uranium Geology, 2018, 34(2): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201802006.htm
|
[32] |
张更宇, 刘静波, 闫锋, 等. 四酸消解-电感耦合等离子体质谱法测定土壤中24种稀有元素的含量[J]. 理化检验(化学分册), 2020, 56(4): 428-437. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202004011.htm
Zhang G Y, Liu J B, Yan F, et al. Determination of 24 rare elements in soil by inductively coupled plasma mass spectrometry with four acid digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2020, 56(4): 428-437. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH202004011.htm
|
[33] |
中国环境监测总站. 土壤元素的近代分析方法[M]. 北京: 中国环境科学出版社, 1992.
China National Environmental Monitoring Centre. Modern analytical methods of soil elements[M]. Beijing: China Environmental Press, 1992.
|
[34] |
王君玉, 吴葆存, 李志伟, 等. 敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素[J]. 岩矿测试, 2011, 30(4): 440-445. doi: 10.3969/j.issn.0254-5357.2011.04.010
Wang J Y, Wu B C, Li Z W, et al. Determination of elemental content in geological samples by one-time acid dissolution and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2011, 30(4): 440-445. doi: 10.3969/j.issn.0254-5357.2011.04.010
|
[35] |
Schnetger B. Trace element analysis of sediments by HR-ICP-MS using low and medium resolution and different acid digestions[J]. Fresenius' Journal of Analytical Chemistry, 1997, 359: 468-472. doi: 10.1007/s002160050614
|
[36] |
宣肇菲, 徐少才, 房贤文, 等. 四种酸体系对微波酸溶-电感耦合等离子体质谱法测定固体废物中16种金属元素含量的影响[J]. 岩矿测试, 2015, 34(6): 617-622. doi: 10.15898/j.cnki.11-2131/td.2015.06.003
Xuan Z F, Xu S C, Fang X W, et al. Influence of four kinds of acid systems on determination of 16 metal elements in solid wastes by ICP-MS with microwave acid digestion[J]. Rock and Mineral Analysis, 2015, 34(6): 617-622. doi: 10.15898/j.cnki.11-2131/td.2015.06.003
|
1. |
李伟明. 微波消解-石墨炉原子吸收光谱法测定土壤样品中镉的含量. 安徽化工. 2024(01): 140-143 .
![]() | |
2. |
孙晓英,李明哲,林世东,肖寒,姜慧芸,孙雪凤. 微波消解-ICP-OES内标法测定废催化剂浸出液中稀土和重金属元素. 化学研究与应用. 2024(02): 444-448 .
![]() | |
3. |
潘倩妮,刘伟,何雨珊,阳国运. 混合酸消解-电感耦合等离子体质谱法测定区域地球化学样品中的银. 岩矿测试. 2024(03): 459-467 .
![]() | |
4. |
江湖,李黎,谭莹,姚强. 微波消解ICP-OES法测定土壤和沉积物中的金属元素. 广州化工. 2024(09): 95-97+137 .
![]() | |
5. |
李胜,李锦才,陈晓燕,陈树娣,吴蓝洁,杨心怡. 盐酸超声提取-高分辨电感耦合等离子体质谱法测定食用植物油中11种微量金属元素. 理化检验-化学分册. 2024(07): 718-724 .
![]() | |
6. |
范俊楠,张钰,李国坡,郭丽,魏巍. 基于不同前处理方式ICP-MS法测定土壤中22种金属元素. 分析科学学报. 2024(04): 454-460 .
![]() | |
7. |
张青,李业军,辛连君,李明. 微波消解-电感耦合等离子体质谱法同时测定土壤中多种金属元素. 化学工程师. 2024(11): 29-33 .
![]() | |
8. |
何佼,杨锐,邓伟,陈壹三,竺美,赵欣. 土壤重金属检测前处理过程优化研究. 四川环境. 2023(04): 1-6 .
![]() | |
9. |
余媛媛,李利霞,张晓华,王威,方超,孙莉鑫,黄瑞成. 微波消解—电感耦合等离子体质谱法同时测定土壤中8种易挥发和难挥发元素. 资源环境与工程. 2023(05): 613-619 .
![]() | |
10. |
肖玉芳,吉义平,任小荣,陈芝桂,董学林,张秦锋. 逆王水微波消解8-羟基喹啉沉淀-电感耦合等离子体质谱法测定钨钼矿石中的铼. 岩矿测试. 2023(05): 915-922 .
![]() | |
11. |
侯博,邓晓明,范艳,陈秀娜,韩永辉,曹金太. 三酸微波消解-硝酸提取-电感耦合等离子体质谱法测定土壤中16种金属元素的含量. 理化检验-化学分册. 2023(12): 1413-1419 .
![]() | |
12. |
火婷,毛宝宏,李亚丽,任伟. 微波消解-电感耦合等离子体质谱法测定血液中30种微量元素. 分析测试技术与仪器. 2022(02): 198-204 .
![]() |