Citation: | ZHANG Yi-yang, ZHONG Fu-jun, DU Jing-yong, YAN Jie, PAN Chun-rong, HUANG Hui, KANG Qing-qing, PAN Jia-yong. Application of μ-XRF in Uranium Mineralogy of the Huanglongpu Carbonate-type Molybdenum Deposit, Shaanxi Province, China[J]. Rock and Mineral Analysis, 2022, 41(1): 32-42. DOI: 10.15898/j.cnki.11-2131/td.202105260067 |
黄典豪, 侯增谦, 杨志明, 等. 东秦岭钼矿带内碳酸岩脉型钼(铅)矿床地质-地球化学特征、成矿机制及成矿构造背景[J]. 地质学报, 2009, 83(12): 1968-1984. doi: 10.3321/j.issn:0001-5717.2009.12.012
Huang D H, Hou Z Q, Yang Z M, et al. Geological and geochemical characteristics, metallogenetic mechanism and tectonic setting of carbonatite vein-type Mo (Pb) deposits in the East Qinling molybdenum ore belt[J]. Acta Geologica Sinica, 2009, 83(12): 1968-1984. doi: 10.3321/j.issn:0001-5717.2009.12.012
|
Xu C, Kynicky J, Chakhmouradian A R, et al. A unique Mo deposit associated with carbonatites in the Qinling orogenic belt, central China[J]. Lithos, 2010, 118(1-2): 50-60. doi: 10.1016/j.lithos.2010.03.013
|
王佳营, 李志丹, 张祺, 等. 东秦岭地区碳酸岩型钼-铀多金属矿床成矿时代: 来自LA-ICP-MS独居石U-Pb和辉钼矿Re-Os年龄的证据[J]. 地质学报, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011
Wang J Y, Li Z D, Zhang Q, et al. Metallogenic epoch of the carbonatite-type Mo-U polymetallic deposit in East Qinling: Evidence from the monazite LA-ICP-MS U-Pb and molybdenite Re-Os isotopic dating[J]. Acta Geologica Sinica, 2020, 94(10): 2946-2964. doi: 10.3969/j.issn.0001-5717.2020.10.011
|
黄典豪, 王义昌, 聂凤军, 等. 一种新的钼矿床类型——陕西黄龙铺碳酸岩脉型钼(铅)矿床地质特征及成矿机制[J]. 地质学报, 1985, 59(3): 241-257, 275. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198503006.htm
Huang D H, Wang Y C, Nie F J, et al. A new type of molybdenum deposit-Geological characteristics and metal-logenic mechanism of the Huanglongpu carbonatite vein-type of molybdenum (lead) deposit, Shanxi[J]. Acta Geologica Sinica, 1985, 59(3): 241-257, 275. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198503006.htm
|
许成, 宋文磊, 漆亮, 等. 黄龙铺钼矿田含矿碳酸岩地球化学特征及其形成构造背景[J]. 岩石学报, 2009, 25(2): 422-430. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200902016.htm
Xu C, Song W L, Qi L, et al. Geochemical characteristics and tectonic setting of ore-bearing carbonatites in Hunglongpu Mo ore field[J]. Acta Petrologica Sinica, 2009, 25(2): 422-430. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200902016.htm
|
Cangelosi D, Smith M, Banks D, et al. The role of sulfate-rich fluids in heavy rare earth enrichment at the Dashigou carbonatite deposit, Huanglongpu, China[J]. Mineralogical Magazine, 2020, 84(1): 65-80. doi: 10.1180/mgm.2019.78
|
Song W L, Xu C, Smith M P, et al. Origin of unusual HREE-Mo-rich carbonatites in the Qinling Orogen, China[J]. Scientific Reports, 2016, 6(1): 1-10. doi: 10.1038/s41598-016-0001-8
|
Smith M, Cangelosi D, Yardley B, et al. Mechanisms for the generation of HREE mineralization in carbonatites: Evidence from Huanglongpu, China[C]//Natural History Museum, SGA Conference Abstract, 2019: 1-5.
|
Bai T, Chen W, Jiang S Y. Evolution of the carbonatite Mo-HREE deposits in the Lesser Qinling Orogen: Insights from in situ geochemical investigation of calcite and sulfate[J]. Ore Geology Reviews, 2019, 113: 103069. doi: 10.1016/j.oregeorev.2019.103069
|
惠小朝. 陕西省华阳川铀多金属成矿作用地球化学研究[D]. 北京: 核工业北京地质研究院, 2014.
Hui X Z. Study on mineralization and geochemistry of the Huayangchuan uranium ploymetallic deposit, Shaanxi Province[D]. Beijing: Research Institute of Uranium Geology, Beijing, 2014.
|
高成, 康清清, 江宏君, 等. 秦岭造山带发现新型铀多金属矿: 华阳川与伟晶岩脉和碳酸岩脉有关的超大型铀-铌-铅-稀土矿床[J]. 地球化学, 2017, 46(5): 446-455. doi: 10.3969/j.issn.0379-1726.2017.05.004
Gao C, Kang Q Q, Jiang H J, et al. Aunique uranium polymetallic deposit discovered in the Qinling orogenic belt: The Huayangchuan super-large U-Nb-Pb-REE deposit associated with pegmatites and carbonatites[J]. Geochimica, 2017, 46(5): 446-455. doi: 10.3969/j.issn.0379-1726.2017.05.004
|
Zheng H, Chen H, Li D, et al. Timing of carbonatite-hosted U-polymetallic mineralization in the supergiant Huayangchuan deposit, Qinling Orogen: Constraints from titanite U-Pb and molybdenite Re-Os dating[J]. Geoscience Frontiers, 2020, 11(5): 1581-1592. doi: 10.1016/j.gsf.2020.03.001
|
许涛, 罗立强. 原位微区X射线荧光光谱分析装置与技术研究进展[J]. 岩矿测试, 2011, 30(3): 375-383. doi: 10.3969/j.issn.0254-5357.2011.03.028
Xu T, Luo L Q. Developments of micro-X-ray fluorescence spectrometer and applications[J]. Rock and Mineral Analysis, 2011, 30(3): 375-383. doi: 10.3969/j.issn.0254-5357.2011.03.028
|
Flude S, Haschke M, Storey M, et al. Application of benchtop micro-XRF to geological materials[J]. Mineralogical Magazine, 2017, 81(4): 923-948. doi: 10.1180/minmag.2016.080.150
|
罗立强, 沈亚婷, 马艳红, 等. 微区X射线荧光光谱仪研制及元素生物地球化学动态分布过程研究[J]. 光谱学与光谱分析, 2017, 37(4): 1003-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201704003.htm
Luo L Q, Shen Y T, Ma Y H, et al. Development of laboratory microscopic X-Ray fluorescence spectrometer and the study on spatial distribution of elements in biofilms and maize seeds[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1003-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201704003.htm
|
Barker R D, Barker S L, Wilson S A, et al. Quantitative mineral mapping of drill core surfaces Ⅰ: A method for μ-XRF mineral calculation and mapping of hydrothermally altered, fine-grained sedimentary rocks from a carlin-type gold deposit[J]. Economic Geology, 2021, 116(4): 803-819. doi: 10.5382/econgeo.4803
|
Schmid S, Taylor W R, Jordan D P. The Bigrlyi tabular sandstone-hosted uranium-vanadium deposit, Ngalia Basin, central Australia[J]. Minerals, 2020, 20(10): 896. https://www.mdpi.com/2075-163X/10/10/896/htm
|
Woldegabriel G, Boukhalfa H, Ware S, et al. Characterization of cores from an in-situ recovery mined uranium deposit in Wyoming: Implications for post-mining restoration[J]. Chemical Geology, 2014, 390: 32-45. doi: 10.1016/j.chemgeo.2014.10.009
|
Herazo A, Reich M, Barra F, et al. Assessing the role of bitumen in the formation of strata bound Cu-(Ag) deposits: Insights from the Lorena deposit, Las Luces district, northern Chile[J]. Ore Geology Reviews, 2020, 124: 103639. doi: 10.1016/j.oregeorev.2020.103639
|
李六权, 崔江荣, 陈浩. 陕西木龙沟-黄龙铺地区钼、铼、稀土资源量概况及铼、稀土赋存特征[J]. 陕西地质, 2019, 37(1): 1-7. doi: 10.3969/j.issn.1001-6996.2019.01.001
Li L Q, Cui J R, Chen H. General situation of molybdenum, rhenium and rare earth resources and occurrence characteristics of rhenium and rare earth in Mulonggou-Huanglongpu area of Luonan County[J]. Geology of Shaanxi, 2019, 37(1): 1-7. doi: 10.3969/j.issn.1001-6996.2019.01.001
|
王运, 胡宝群, 孙占学, 等. 相山铀矿田邹家山矿床钛铀矿赋存特征及成因[J]. 铀矿地质, 2010, 26(6): 344-349. doi: 10.3969/j.issn.1000-0658.2010.06.004
Wang Y, Hu B Q, Sun Z X, et al. Occurring characteristics and genesis of brannerite at Zoujiashan uranium deposits, Xiangshan ore field[J]. Uranium Geology, 2010, 26(6): 344-349. doi: 10.3969/j.issn.1000-0658.2010.06.004
|
李治兴, 漆富成, 张字龙, 等. 张家界下寒武统磷块岩中钛铀矿的晶出方式与成矿机理[J]. 矿物学报, 2017, 37(3): 305-313. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201703007.htm
Li Y X, Qi F C, Zhang Z L, et al. Crystallization and metallization of brannerite in marine phosphorite of the Lower Cambrian Niutitang Formation in Zhangjiajie area, China[J]. Acta Mineralogica Sinica, 2017, 37(3): 305-313. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201703007.htm
|
王贵, 王强, 苗爱生, 等. 鄂尔多斯盆地纳岭沟铀矿床铀矿物特征与形成机理[J]. 矿物学报, 2017, 37(4): 461-468. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201704013.htm
Wang G, Wang Q, Miao A S, et al. Characteristics of uranium minerals in Nalinggou uranium deposit of Ordos Basin and their formation mechanism[J]. Acta Mineralogica Sinica, 2017, 37(4): 461-468. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201704013.htm
|
Cuney M. Geologic environment, mineralogy, and fluid inclusions of the Bois Noirs-Limouzat uranium vein, Forez, France[J]. Economic Geology, 1978, 73(8): 1567-1610. doi: 10.2113/gsecongeo.73.8.1567
|
Hu R Z, Bi X W, Zhou M F, et al. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary[J]. Economic Geology, 2008, 103(3): 583-598. doi: 10.2113/gsecongeo.103.3.583
|
闵茂中, 张富生. 成因铀矿物学概论[M]. 北京: 原子能出版社, 1992.
Min M Z, Zhang F S. Uranium minerageny[M]. Beijing: Atomic Energy Press, 1992.
|
Cuney M. Felsic magmatism and uranium deposits[J]. Bulletin de la Société Géologique de France, 2014, 185(2): 75-92. doi: 10.2113/gssgfbull.185.2.75
|
Zhang L, Chen Z Y, Wang F Y, et al. Release of uranium from uraninite in granites through alteration: Implications for the source of granite-related uranium ores[J/OL]. Economic Geology, 2021, https://doi.org/10.5382/econgeo.4822.
|
Rallakis D, Michels R, Brouand M, et al. The role of organic matter on uranium precipitation in Zoovch Ovoo[J]. Mongolia Minerals, 2019, 9(5): 310. https://www.mdpi.com/2075-163X/9/5/310/htm
|
Scheinost A C, Hennig C, Somogyi A, et al. Uranium speciation in two Freital mine tailing samples: EXAFS, μ-XRD, and μ-XRF results[M]//Uranium in the Environment. Heidelberg: Springer, 2006.
|